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The irreversibility of a stationary time series can be quantified using the Kullback-Leibler divergence (KLD)
between the probability of observing the series and the probability of observing the time-reversed series. Moreover,
this KLD is a tool to estimate entropy production from stationary trajectories since it gives a lower bound to
the entropy production of the physical process generating the series. In this paper we introduce analytical and
numerical techniques to estimate the KLLD between time series generated by several stochastic dynamics with
a finite number of states. We examine the accuracy of our estimators for a specific example, a discrete flashing
ratchet, and investigate how close the KLD is to the entropy production depending on the number of degrees of

freedom of the system that are sampled in the trajectories.
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I. INTRODUCTION

The relationship between irreversibility and entropy pro-
duction is mentioned in many undergraduate courses of
thermodynamics and statistical physics. A canonical example
is a glass falling to the ground and smashing into pieces. The
time reverse of this process is compatible with Newton’s laws,
but the chances for it to occur spontaneously are incredibly
small. Such a process is irreversible and the signature of this
irreversibility is the production of a macroscopic amount of
entropy in the universe.

The relation between irreversibility and entropy production
was only a qualitative statement until the recent introduction
of the Kullback-Leibler divergence (KLD) in the context of
fluctuation theorems [1,2]. The time irreversibility of a process
is given by the distinguishability between the process and
its time reversal, which in turn can be quantified using the
KLD or relative entropy, a measure of the distinguishability
between two probability distributions defined in information
theory [2—4]. This KLD, multiplied by the Boltzmann constant,
turns out to be a lower bound to the entropy production along
the process [1,2,5-15]. The bound becomes more accurate
when the observables that are used to calculate the KLLD
contain a more complete description of the state of the system.
This result has been derived in a variety of situations such
as driven systems under Hamiltonian [1,2,8] and Langevin
[11,14,16,17] dynamics; Markovian processes [7,10]; and also
for electrical circuits [12]. Andrieux et al. have verified it
experimentally using the data of the position of a Brownian
particle in a moving optical trap [14,18], and we have
shown that the bound yields a useful estimate of the entropy
production in a nonequilibrium stationary state (NESS).

Imagine repeatedly sampling (or measuring) an observable
of a system in a NESS. The trajectory of the outcomes is a
stationary time series that can be used to estimate the KLD,
by comparing the statistics of the time series with the statistics
of the same series but time reversed [9]. This means that one
can bound from below the entropy production in the NESS
from a single time series obtained in an experiment. Such a
tool is of interest in many practical situations. For instance,
it allows one to discriminate between active and passive
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processes in biological systems, or even to estimate or bound
the amount of entropy produced, and therefore the amount
of ATP consumed in a biological process. In fact, there have
been previous attempts to make this distinction. Martin et al.
have considered the violation of the fluctuation-dissipation
relationship as a signature of nonequilibrium in the motion of a
hair cell by using two types of measurement: the spontaneous
motion of the hair bundle and the response to an external
force [19]. Amman et al. discriminated between equilibrium
and the NESS in a three-state chemical system [20]. Finally,
Kennel introduced in Ref. [21] criteria based on compression
algorithms to distinguish between time-symmetric and time-
asymmetric chaotic series but without any connection to the
physical entropy.

We are interested in estimating the KLD between the
probability of observing a stationary trajectory of one or
several observables of the system and the probability of
observing the same trajectory but time reversed. We want to
explore how this quantity bounds the entropy production of the
underlying physical process [1,2,9] depending on the number
of degrees of freedom of the system that are sampled in the
observed stationary trajectory. Two distinct issues immediately
arise: the estimation of the KLLD from an empirical stationary
time series and the accuracy of the bound. In this paper
we address these two issues by introducing numerical and
semianalytical techniques to estimate the KLD from data
obtained from systems with a finite number of states.

There have been different attempts to provide accurate
estimators of the KLD from a finite number of data. References
[22,23] investigate how this measure can be estimated when
considering empirical probability distributions of two different
Markovian and higher order Markovian time series. They
develop techniques based on empirical counting of finite
sequences of data which are generalized to real-valued time
series in Refs. [14,24,25]. A different approach is given in
Ref. [26], where the KLD between two different probability
distributions is estimated using compression algorithms. In this
paper we refine these methods and test their performance when
used to estimate the KLLD from single stationary trajectories.

To explore the bound to the entropy production, we work
with a discrete flashing ratchet model, where we can compare
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the entropy production with the analytical value and the
empirical estimations of the KLLD. With this model, we can
analyze how information losses affect the estimation of the
KLD and the tightness of the bound for the entropy production.

The paper is organized as follows: Section II reviews the
concept of the KLLD and discusses its connection with entropy
production. In Sec. III we present analytical and semianalytical
tools to calculate the KLD between hidden Markov chains.
Section IV gives a detailed description of the estimators of the
KLD from empirical data, whose performance for the flashing
ratchet is analyzed in Sec. V. Finally, we present our main
conclusions in Sec. VL.

II. KULLBACK-LEIBLER DIVERGENCE,
IRREVERSIBILITY, AND ENTROPY PRODUCTION

A. The Kullback-Leibler divergence

The Kullback-Leibler divergence, or relative entropy, mea-
sures the distinguishability of two probability distributions
p(x) and g(x):

Dlp()lig(x)] = /dx p(x)In &- (1)

q(x)

It is always positive and vanishes if and only if p(x) = g(x)
for all x. Its interpretation as a measure of distinguishability
is a consequence of the Chernoff-Stein lemma [3]: The
probability of incorrectly guessing (via hypothesis testing) that
a sequence of n data is distributed according to p when the
true distribution is ¢ is asymptotically equal to e™*PlPMIlgO],
Therefore, when p and g are similar—in the sense that they
overlap significantly—the likelihood of incorrectly guessing
the distribution, p or g, is large [3].

Let us recall a property of the KLD that we will use
throughout the paper [3]. If we have two random variables
X,Y and two joint probability distributions p(x,y) and g(x,y),
then

D[p(x,»)lgx,y)] = D[p(x)lg(x)]. 2

This means that it is harder to distinguish between p and ¢
when we consider only the marginal distributions, p(x) and
q(x), instead of the full joint distributions, p(x,y) and g(x,y).
If X,Y describe the state of a system, Eq. (2) indicates that the
KLD decreases when only a partial description of the system,
given by the variable X, is available.

B. Irreversibility and entropy production

Consider a physical system with Hamiltonian H(z;\),
where z denotes a point in phase space I and A is a parameter
of the system controlled by an external agent. The system
is initially isolated in equilibrium at temperature 7', and
the external agent modifies A following a protocol A,, with
t € [0,7]. We then let the system equilibrate by coupling it
to a bath at temperature 7’. The initial and final states of
this process are equilibrium states for which entropy is well
defined. We denote by p(z,t) the probability density on phase
space at time ¢, and by §(Z,t) the probability density when the
system is driven by the time-reversed protocol 1, = A,_, with
t € [0,7]. Here Z denotes the point in phase space resulting
from changing the sign of all momenta in z. In Ref. [2] it is
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proved that the change of the entropy A S in the system plus the
bath, averaged over many realizations of the process, satisfies

(AS) = kD[p(z,)lIp(Z,T — 1], 3

where k is Boltzmann’s constant. Equation (3) is valid for
a variety of initial equilibrium conditions [2]: canonical,
multicanonical (several uncoupled systems at different tem-
peratures), and grand-canonical distributions, as well as for
different types of baths equilibrating the system at the end of
the process. In particular, for canonical initial conditions in the
forward and in the time-reversed processes, both at the same
temperature 7', Eq. (3) reads (see Ref. [2])
(AE) - AF  (Q)

(AS) = (ASsystem) + (ASpan) = T + T

=, “)

where (AE) and AF refer respectively to the system average
energy and free energy change, Q is the heat exchanged
with the thermal bath at the end of the process (realization
dependent), and W = AE 4+ Q is the work performed by
the external agent. Therefore, in this specific case, entropy
production equals the average dissipated work (Wyis) =
(W) — AF divided by the temperature 7 and (3) becomes

(Waiss) = kT D[p(z, )1 5(Z,T — 1)]. )

Since the evolution is deterministic, except for the last stage
where the system is connected to the bath, the point z at time ¢
determines the whole trajectory of the system {z(¢)};_,. Then
z(t) and {z(#)};_, carry the same information and the KLD of
their respective PDFs are equal. Equation (5) can be rewritten
in terms of path probabilities P [16]:

(Waiss) = kT D[P({z(0) o) [P ({2(r = 0)p)]. (6

On the other hand, integrating Crook’s relationship [27], W —
AF =1In %, where p(W) [ p(W)] is the probability density
of the work done on the system along the actual (time-reversed)
process [16,27], one immediately gets

(Waiss) = kT D[p(W)| p(=W)]. N

Notice that the work W is a function of the trajectory {z(¢)};_,
containing much less information than the trajectory itself. As
indicated by Eq. (2), the KLD of work distributions should in
principle be smaller than the KLD of trajectory distributions.
On the contrary, the KLD is the same, indicating that all the
irreversibility of the process is captured by the dissipative
work [16].

C. Stationary trajectories

We now proceed to apply the above results to stationary
trajectories. Consider a long process in which the system
reaches a nonequilibrium stationary state (NESS) after a
possible initial transient. In the NESS the external parameter
is held fixed, A, = A; the system is kept out of equilibrium
due to the existence of baths at different temperatures
(a possibility that is included in the hypothesis used in Ref. [2]
to prove (3)) or different chemical potentials, external constant
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forces, etc. In the steady state, since the control parameter
remains fixed, the protocol and its time reversal are identical:
A = A, = A [13]. Therefore the probability distributions of
the process and its time reversal are identical, P = P. In the
long time limit, T — oo, we can neglect the contribution of
the transient to the entropy production and rewrite (3) for the
entropy production per unit of time S in the NESS [28] as

. k
(8) = lim —D[P({z}i_o) |P(lz = }p)] ®)

A similar expression can be obtained from the Gallavotti-
Cohen theorem [29,30], AS ~ k1In ppE(AAS;), where p.(AS)
is the probability to observe an entropy production AS in
the interval [0, T]. The Gallavotti-Cohen relationship, which is

exact for t — o0, yields, after averaging,

. k
(5) = lim —D[p:(AS)l|p-(=AS)]. 9

Consequently, although AS is another observable that is
obtained as a function of the microstate of the system,
the KLD calculated with AS yields the same value as the
one calculated with full information of the system. Therefore
entropy production captures all the information about the time
irreversibility of the NESS.

When one does not observe the entire microscopic trajec-
tory {z(?)};_, in Eq. (8) but the trajectory followed by one or
several observables of the system x(¢), the KLD only provides a
lower bound to the entropy production [31]. Equations (7) and
(9) indicate that the equality is recovered if the observables
determine in a unique way the entropy production or the
dissipated work.

In an experimental context, the observables are usually
sampled at a finite frequency. The output is then a time series
of data or discrete trajectory, x = (X1,%2, ...,%,), where X; can
be the value of a single or several observables of the system. In
this case, we are interested in estimating the entropy production
per data of the underlying physical process, which we denote
by (S) in the rest of the paper. Entropy production per data is
related to the KLD rate per data, which we define below.

Given an infinitely long realization or time series sampled
from a random process X; (i = 1,2,...), which can be
multidimensional, we define by p(x{") the probability that
a given string of m consecutive data is equal to x{" =
(x1,x2, ...,xn). We define the mth-order KLD for this random
process X; by the distinguishability between p(x{') and the
probability p(xl) to observe the reverse sequence of data
er = (xm’xm Iy -- X])

DX = Dlp()lp)] = Y pletym 250 )

p(xh)

The KLD rate for the process X; is defined as the growth rate
of DX with the number of data:

DX
d¥ = lim —=. (11)

m—o0o m

By virtue of (8) and (2), this quantity bounds from below the
entropy production per data

($) > kd*, (12)
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where the bound is saturated if the random variable is the
microstate of the system X = {q,p} and the sampling rate is
infinite [31] or X determines uniquely the entropy production
in the process.

Equation (12) is our basic result. It reveals a striking
connection between physics and the statistics of a time series.
The left-hand side, (S), is a purely physical quantity, whereas
the right-hand side, d¥, is a statistical magnitude depending
solely on the observed data, but not on the physical mechanism
generating the data. Such a connection generalizes Landauer’s
principle relating entropy production and logical irreversibility
in computing machines [1,32,33]. Equation (12) extends this
principle and suggests that we can determine the average
dissipation of an arbitrary NESS, even ignoring any physical
detail of the system.

D. Markovian trajectories obeying local detailed balance

We first analyze how the bound (12) is expressed for
Markovian time series that obey detailed balance by de-
riving analytical expressions for both entropy production
and the KLD rate. If the random process X; is Marko-
vian, the probability distribution p(x{") factorizes p(x}') =
px)pxa|xy) - pxy | Xm— 1) which also holds if we reverse
the arguments, i.e., for p(x ). Substituting these expressions
into Eq. (11), we get

m

P(X x1)
Z P(xl,xz)ln i =Dy —D{ =Dy, (13)

= x1x2)

since D{ = 0 when comparing a trajectory and its reverse.
Therefore, dX only depends on transition probabilities if X is
a random Markovian process.

We now relate d* in Eq. (13) with the entropy production
when the system reaches a NESS, because it is in contact
with several thermal baths. In this situation, the local detailed
balance condition is satisfied. We call V(x;) is the energy
of the state x;, and T, ., is the temperature of the bath
that activates the transitions x; — x, and x, — x;. The local
detailed balance condition reads in this case

pixalx) V(x1) = V(x)
paril) P ( kT v, ) ' (1
Inserting (14) into (13),
\% -V
JX — ; (1) (x;()Txl xz(xz)
X1,X2 S
= Z p(x1,x) kQTn = <k>, (15)

where Qy, v, = V(xl) — V(x,) is the heat dissipated to the
corresponding thermal bath in the jump x; — x», and S is
the total entropy production per data. Therefore, Eq. (12) is
reproduced, with equality, in the case of a physical system
obeying local detailed balance, if we have access to all
the variables describing the system. The same conclusion is
reached if we induce the NESS by means of nonconservative
constant forces.

Equation (13) can be explored further by defining the
current from the state x| to the state x; as the net probability
flow from x; to x2, Jy—x, = p(x1,X2) — p(x2,x1). If the
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system is not far from equilibrium the current tends to zero,
and the condition J,,_,,, < p(x1,x2) is satisfied, yielding

@ ) Gy (Jxl—»cz)z

X1,X2

This expression is well known from linear irreversible ther-
modynamics [34], where entropy production is given by
the product of a flow times a thermodynamic force that is
proportional to the flow itself. Equation (16) implies that
the time asymmetry of a Markovian process not far from
equilibrium is revealed by the currents or probability flows that
can be observed. In other words, a Markovian process without
flows is time reversible. This is not the case for non-Markovian
time series, where irreversibility can show up even in the
absence of currents (see below and [9]).

III. KULLBACK-LEIBLER DIVERGENCE BETWEEN
HIDDEN MARKOV CHAINS

In many experimental situations, a physical process is
Markovian at a micro- or mesoscopic level of description, but
the observed time series only contain a subset of the relevant
observables, being non-Markovian in general. This is the case
in biological systems, where one can only register the behavior
of some mechanical and maybe a few chemical variables,
while most of the relevant chemical variables cannot be
monitored. These kinds of non-Markovian time series obtained
from an underlying Markov process are called hidden Markov
chains [35].

In this section we derive a semianalytical technique to
calculate the KLD rate between hidden Markov chains. We
focus on a simple case where the underlying Markov process
is described by two observables X and Y; however we only
observe X whose evolution is described by a hidden Markov
chain. The KLD rate for the observable X is

X _ 1 l m Z‘Tﬂ p(xiln’ylln)
d* = lim — ;IJ(XI )In SRS (17)

m m

It is convenient to write dX as a difference between two terms,
dX = hX — h¥X, where

1
X _ _ 14 _ m m .m
= rrtll)ngomzp(xl)lnzu:p(xl D7) a8
X

h

is called the Shannon entropy rate, and
1
hxz—l'm_ m\ 1n l’ 1 , 19
" m1—>oo m szp(xl ) yzlp(xm ym) ( )
1 m

the cross entropy rate. Since the underlying process is
Markovian, p(x{",y{") factorizes and both Shannon and cross
entropy can be expressed in terms of the trace of a product
of random transition matrices T [36,37]. These are square
M x M random matrices, where M is the number of values
that the variable y can take on, and their entries are given by

T(x1,x2)y,y, = plx2,¥20x1,1). (20)

Note the different role played by each variable in this
formalism: x; are parameters defining the matrix (making T
a random matrix), whereas y; are subindices of the matrix
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elements. The Shannon and cross entropy can be expressed in
terms of these matrices,

m—1
. 1
X = —mh_)ngoa<lnTr |:1_[ T(xi,xi+1)j|>, (21)

i=1

m—1
hX = — lim 1 <lnTr []’[ T(xm_i+1,xm_i):|>, (22)
m—00 M i
where (-) denotes the average over the random process X;,
which are weighted by p(x{"). For sufficiently large m,
Egs. (21) and (22) are self-averaging [37], meaning that we
do not need to calculate the average but just compute the
trace for a single stationary trajectory. For any sufficiently
long time series X = (X1,%3, . . . ,X,) with n large, the following
expressions converge to —h and —h, almost surely,

n—1
AX=-In T(%;, % ~ —h¥, 23
- 1} (&i Ri41) (23)
n—1
P=—In|] | TGiz. 80 || = =1, 24
. ]1 Fnig1,801) ] (24)
where || - || is any matrix norm that satisfies ||A - B|| < ||A]|

[IB|| [37]. In particular, the trace satisfies this condition for
positive matrices. In the context of random matrix theory,
AX and A% are known as maximum Lyapunov characteristic
exponents [38] and measure the asymptotic rate of growth of a
random vector when being multiplied by a random sequence
of matrices. In practice, we can estimate dX semianalytically
as

~

d* =X — A% (25)

Here A* and AX are estimated using (23) and (24) with a
single time series x of size n, following a technique introduced
in Ref. [38]: We generate a random stationary time series
x = {%]} and compute the matrices T analytically; then a
random unitary vector is multiplied by those matrices and
normalized every / data, keeping track of the normalization
factor; finally the product of these factors divided by n yields
AX. For A%, the same procedure is repeated but using the
reversed time series X = {£!}. The technique is semianalytical
since the transition probabilities are known analytically but a
single random stationary time series X is necessary to estimate
d* with the multiplication of n transition matrices that are
chosen according to x.

Let us recall that the estimator d* cannot be applied to
empirical time series unless we know the Markov model
behind the data. Consequently, it is not useful in practical
situations. However, we will use it to check the performance
of the estimators introduced in the following section, which
only need a single stationary time series to estimate the KLLD
and do not assume any knowledge of the dynamics generating
these data. On the other hand, one can also get analytical
approximations of Egs. (21) and (22) by using the replica trick,
in a way analogous to that done in Ref. [39]. The calculation
is cumbersome and is explained in the Appendix. Both the
semianalytical and the replica calculations are used in Sec. V
to check the accuracy of several empirical estimators of the
KLD.
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IV. ESTIMATING KLD RATES FROM SINGLE
STATIONARY TRAJECTORIES

In previous sections, we calculated the KLLD analytically
(or semianalytically) for series where we know in advance
the dynamics of the underlying physical process. We now
investigate how the KLD rate can be estimated from a
single empirical stationary trajectory, obtained from a discrete
stochastic process whose dynamics is unknown. We call £; the
value of the ith data of an empirical trajectory of n data, which
is denoted by x = {£;}7_,. There are two types of estimators in
the literature: plug-in estimators, based on empirical counting
of sequences of data, and estimators based on compression
algorithms. In this section, we introduce a refinement of the
these two methods and analyze their performance for a specific
example in Sec. V.

A. Plug-in estimators

The simplest approach to estimate the KLD rate is known
as the plug-in method [24], which consists of an empirical
estimation of the probabilities of sequences of m data, p(x}"),
appearing in Eq. (10). The probability of observing the
sequence x{', p(x{"), is estimated empirically from simply
counting the number of times that x{' appears in a single
stationary trajectory x = (%1, ...,X,) of size n. The empirical
probability distribution is

n—(m—1)

P() = n—(m—l) Z 8y -

Then an estimate of DX is obtained by plugging the empirical
probability distribution into Eq. (10):

D =nlp (P el= X renm i e

m

(26)

Xp+(m 1):%Xm *

Note that the probabilities in Eq. (27) include the superscript x
to emphasize that they are obtained empirically from a single
stationary time series X and therefore depend on each particular
realization The simplest way to estimate d* would be by

taking — Du for m as large as possible. However, this naive
approach is not efficient. The empirical probability p*(x{")—
and therefore ﬁf,l—is less accurate as m increases, because
the number of possible substring x|" increases exponentially
and the statistics shortly becomes poor. It is convenient to find
alternative expressions with a fast convergence. It turns out
that the slope of ﬁx as a function of m,

(28)

also converges to the KLD rate but faster than %X Our plug-in
estimator will be constructed as the limit

d* = lim d*. (29)

m— o0

For a Markovian time series, as shown in Eq. (13), the limit
is reached for m = 2, and using distributions of three or more
data we only get redundant information: d* = d¥ = d¥, for
any m > 2. Therefore, d* = c?%‘ is an excellent estimator of the
KLD, dX.If x is a kth-order Markov chain (i.e., it is Markovian
when considering blocks of k data {)?f}), then the limit is
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reached for m = k, ie., d* = dA,f = dA,fH = dA,’{‘+2 =... [23].
The convergence of (29) is then expected to be fast if a time
series can be approximated by a kth-order Markov chain.

If the trajectory x is sampled from a general non-Markovian
process, one needs further information to extrapolate c?;i for
m — 00, especially when only moderate values of m can be
reached. In the examples discussed below, we have found
that convergence is well described by the following ansatz,
proposed by Schiirmann and Grassberger [40] to estimate the
Shannon entropy rate:

X e— . (30)

Here ¢ and y are parameters that, together with cigo, can be
obtained by fitting the empirical values of 3:1 as a function
of m. The fitting parameter c?é‘o gives an estimation of the
limit (29).

This estimation method is efficient as long as there is
sufficient statistics in the data, that is, if for every series x{"
that occurs in the trajectory, its reverse x! is observed at least
once. On the other hand, if we find empirically p*(x{") # 0
while p*(x)) = 0 for at least one case, the argument of the
logarithm in Eq. (10) diverges, yielding d,’,‘l = 00. We can avoid
this divergence by restricting the sum in D; to sequences x{"
whose reverse x| occurs in the time series:

b= 3 P p)

)’

where (x]")* = {x]" | p*(x!") # 0 and p*(x)) # 0}. With this
restriction, a lower bound to ﬁ:‘n is always obtained,
Dy < Dy,

A different strategy is to artificially bias the empirical
probabilities such that all of them become positive. Instead of
the observed empirical frequencies, we can use the following
biased frequencies [41]:

3D

o) + 7

Y [ () +v ]

Here n*(x{") is the number of observations of x{* in x and y
is the bias, which is a small number that prevents any of the
probabilities from being zero, assigning a probability of order
y /n to sequences that are not observed. The denominator in
Eq. (32) ensures normalization of p*(x{").

P = (32)

B. Ziv-Merhav estimator

Ziv and Merhav introduced in Ref. [26] an estimator of
the KLD rate between two probability distributions based
on compression algorithms. It consists on slicing or parsing
stationary discrete time series into smaller parts according
to a specific algorithm. The slicing produces a sequence of
numbers (often called a dictionary) that contains the same data
as the original series, but it is divided into subsequences, called
phrases. The algorithms that are used are called compression
algorithms because the number of phrases in which a time
series X of n numbers is parsed into is smaller than .

The estimator is defined in terms of two concepts which are
now described, the compression length of a sequence and the
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cross-parsing length between two different sequences. Given
a series X = x{, its compression length c(x]) is defined as
the number of distinct phrases in which it is parsed using the
Lempel-Ziv (LZ) algorithm [42]. The LZ algorithm parses
a series sequentially, such that each phrase that is added
to the dictionary is the shortest distinct phrase that is not
already in the dictionary. For example, let us consider the
series X = x1“ =(0,1,1,1,1,0,0,0,1,1,0). The LZ sequential
parsing for this example is as follows: First we store the first
element of the sequence x; = 0 in the dictionary as it is empty,
hence Dict = {0}. Then we read the next number, x;, = 1,
which is not already in the dictionary, so x, is added to the
dictionary, Dict = {0|1}. The next number in x{' is x3 = 1,
which is already in the dictionary. Then we append to x3 the
next number of the sequence, x§ = (1,1). This phrase is not
in the dictionary and therefore it is parsed, Dict = {0]1|(1,1)}.
By doing this for all the series x|', we obtain the following
dictionary of phrases: Dict = {0]1](1,1)[(1,0)|(0,0)|(1,1,0)}.
The compression length is the number of phrases that the
dictionary contains once the series X is completely parsed,
c(x{") =6 in this example. The compression length of a
stationary time series is related to its Shannon entropy rate [3]
in the limit of infinitely long sequences:

fim CEDIECD) v (33)

n—oo n
However, as d¥ = hX — h*, we also require an estimator for
h¥X in order to determine d*. This is given in terms of another
quantity called the cross-parsing length. The cross parsing of
a series x{ with respect to another sequence z is obtained
by parsing x{ looking for the longest phrase that appears
anywhere in z{. As an example, let us consider the cross
parsing of x = x{! = (0,1,1,1,1,0,0,0,1,1,0) with respect to
another sequence z = zil =(1,0,0,1,0,1,0,0,1,1,0). The first
number in x is x; = 0, which is in z. Therefore we append
to x; the next number in X, xl2 = (0,1). This sequence is
also somewhere in z; more precisely it is equal to zg‘, zg’,
and zg, so we append the next item in X, x? =(0,1,1).
Again this sequence is somewhere in z, x; =z, and it is
added to the dictionary, Dict = {(0,1,1)} because xf is not
equal to any subsequence of z}l. We repeat this procedure
again starting from x4 and the resulting dictionary is Dict =
{(0,1,1)|(1,1,0)|(0,0,1,1,0)}. The cross-parsing length is the
number of parsed sequences, which in this example is equal to
c,(xl11 |z{1) = 3. In Ref. [26] it is proved that the following
quantity tends to the KLD rate between the probability
distributions that generated the sequences x = x{ and z = z7,
which we call pX and g7, respectively:

1
lim —[c, (x7]z") Inn — c(x?) Inc(x")] = d(p¥lig?). (34
n_mon[’(lkl) () Ine(x)] =dp lg”). (34
We can estimate d* by using as inputs in the left-hand side of
the above equation a stationary time series and its time reverse.
The Ziv-Merhav estimator of dX when using a time series x of
n data is introduced as follows:

A 1
B3y = e (et mn = c() ne()]. G9)

which converges to d¥ when n — oo, although the conver-
gence is slow [26]. This estimator has been used as a measure
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of distinguishability in several fields such as authorship
attribution [22] or biometric identification [43].

When the KLD rate between the probability distributions
under consideration is small (d¥ <« 1), the estimation given
by Eq. (34) can be even negative [22]. The estimator gives
negative values in some cases because it mixes two types of
parsing: the sequential parsing of the trajectory and the cross
parsing, which is not sequential. We propose the following
correction, which helps to solve this issue and improves the
performance of the estimator. We first evaluate (35) between
different segments of the same trajectory. More precisely, we
splitx into two equal parts and apply the original estimator (34)

_ o (x:/2|x1n/2) In5 — C(xr':/z) In C(x:/z)

&y = e (36)

If the time series is stationary, the two fragments, x'f/ Zand x) 125
are equivalent and d%,, should vanish. However it is usually
negative for finite n and exhibits a slow convergence to zero
for large n [22]. Then, we define our estimator as

Ax =%, — a5y, (37)

C
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0.05}

0.00}

=0.05 ="

KLD rate

—0.10

—0.15

—0.20

0 2 x10° 4 x10° 6 x10° 8 x10° 1 x10°

T

FIG. 1. (Color online) Sketch of the 3-state toy model used to
check the accuracy of our compression estimator (37) and comparison
between different compression estimators and the analytical value of
d* . The analytical value of X foramodel witha = 0.5,8 = 0.7,y =
0.6 (d¥ = d5¥ = 0.08278) is indicated by the solid black line in the
plot. We show the value of the compression estimators obtained from
a single stationary time series x| as a function of the length n: the
Ziv-Merhav estimator d},, (red dashed line), the bias d% ,, (red dotted
line), and our estimator df (red squares).
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which still converges to d whenn — oo and yields much better
results for finite n, as we show with a simple example.

We perform a first validation of this estimator using
the three-state model illustrated in Fig. 1. Trajectories of
the model are lists of numbers, 0, 1, or 2, representing
the three states of the system. The dynamics is Markovian
with transition probabilities given by po_; =1— pj_o =
a, ploa=1—pr,1 =86, and pro=1—por=y. We
call X; the stochastic process describing the state of the
system and x a particular stationary time series, e.g., X =
0,2,1,0,1,2,1,2,...). This time series is reversible only
when the three transition probabilities satisfy the Kolmogorov
condition [44],aBy = (1 —a)(1 — B)(1 — y).InFig. 1 (lower
plot) we compare the value of different compression estimators
with the analytical value of 4% as a function of the length of
the empirical trajectory n. Since the trajectories described by
the state of the system are Markovian, dX only depends on
transition probabilities: d* = d. We see that the Ziv-Merhav
estimator d3,, fails to estimate d¥ accurately when it is small
(d* ~0.083) and in some cases gives a negative value. The
proposed estimator dA;‘, on the other hand, is significantly closer
to the analytical result, although it slightly overestimates its
true value.

V. APPLICATION: THE DISCRETE FLASHING RATCHET
A. The model

We now apply the previous techniques to a specific
example: a discrete flashing ratchet consisting of a Brownian
particle moving on a one-dimensional lattice [45]. The particle
is immersed in a thermal bath at temperature 7" and moves in
a periodic, linear, asymmetric potential of height 2V, which is
switched on and off at a constant rate r (see Fig. 2). Trajectories
are denoted by two random observables: the position of the
particle X (0, 1, or 2) and the state of the potential ¥ (ON,
Y =1o0roFF, Y = 0).

The particle evolves in continuous time according to a
master equation. The dynamics is described in terms of rates
of spatial jumps and switching. For each possible transition
except switches, i.e., (x1,y1) = (x2,y2) with y; = y, =y, we
define a transition rate k(y, y)—(x,y) obeying detailed balance,
Vy(x2) — Vy(xl):|

(38)

k(xls}’)‘)(xzd') = €Xp [_ 2%T

When the potential is on (y = 1), the value of the potential
energy Vi(x) is given in Fig. 2. When the potential is
Off, V()(x) =0 for all X, and k(xlyo)ﬁ(xbo) =1 for X1 75 X2.
The switching rate does not depend on the position of the
particle: k(x, y,)—(x,y,) = 7 for any value of x and y; # y,, and
consequently violates detailed balance, driving the system out
of equilibrium.

We simplify the analysis by mapping the dynamics onto a
discrete-time process, a Markov chain. To this end, we record
in a time series (x,y) = {x{,y{} just a list of the visited states,
discarding any information about the time where jumps and
switches occur. The resulting Markov chain is defined by the
transition probabilities

kxl, y1)— (X2, Y
POyl ] = 5 Cr2es) o (39)

X2,)2 k(xl»yl)ﬁ(xzqyz)
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FIG. 2. Illustration of our discrete ratchet model. Particles are
immersed in a thermal bath at temperature 7 and move in one
dimension in an asymmetric linear potential V;(x) of height 2V
with periodic boundary conditions. The potential is switched on
and off at a rate r, where Vy(x) =0 represents a flat potential,
and the switching probability does not depend on the position of
the particle. The state of the particle is represented by two random
variables (X, Y) indicated in the figure, where X = {0, 1,2} stands for
the position of the particle whereas ¥ = {0,1} for the state of the
potential. Using this description, the system can be in six different
states, (0,0), (1,0), (2,0), (0,1), (1,1), (2,1).

Since we discard any information about the transition times,
we will focus in the rest of paper only on dissipation and KLD
rates per jump or per data. For finite switching rate r, the ratchet
rectifies the thermal fluctuations inducing a current to the left
in Fig. 2 [34,45]. The system obeys a local detailed balance
condition, as described in Sec. II D. The nonequilibrium nature
of the switching can be interpreted in two alternative ways:
One can imagine that it is activated by a thermal bath at
infinite temperature or by an external agent [34]. In either of
the two interpretations, switching does not induce any entropy
production (the bath needs an infinite amount of energy to
change its entropy and the external agent does not produce
any entropy change). Therefore, entropy is only produced
when heat is dissipated to the bath at temperature 7, which
only occurs when the potential is on. The average entropy
production (or dissipation) per data in the time series is then
[see (15)]

. vy -V,
$=Y Y plenaktaa 0D g,

T
y=0,1 x1,x,=0,1,2

which is equal to the KLD rate when calculated for time series
containing the information of both position and state of the
system (which we call full information), (S) = d*¥ =d,"".
‘We now analyze how can d be estimated using single stationary
trajectories of this model, and how close this estimation is to
the entropy production depending on the number of degrees
of freedom of the system that are sampled in the time series.

B. Full information

First, we investigate the estimation of the KLD rate when
using full information of the system (the position of the
particle X and the state of the potential Y), and how close
this KLD rate is to the actual entropy production of the
process. In Fig. 3 we compare the actual dissipation and
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FIG. 3. (Color online) Analytical value of the average dissipation
per data in units of kT (black line) as a function of 8V in the flashing
ratchet (+ = 1) and different estimators of d*:¥. For each value of
BV, estimators are obtained from a single stationary time series of
n = 10° data containing full information of the system (position, X,
and state of the potential, Y). Plug-in estimators: c?;“y (blue circles),
dYY (green diamonds), and dy¥ using biased probabilities with y = 1
(blue open circles). Compression estimator: c?(’,‘*y (red squares).

several empirical estimations of d*¥ for different values
of the height of the potential, V. For each value of V
we simulate a single stationary time series of n = 10°
data that contains full information, and calculate the plug-
in estimators c?;’y s 3;”, as well as the compression-based
estimator d.Y.

Since trajectories containing full information are Marko-
vian, the plug-in estimator immediately converges to the
dissipation dy” = d*Y¥ = d*¥ = (S)/k if there is enough
statistics, which happens when V is below or of order
kT. If V > kT, the observation of the uphill jumps such
as (0,1) — (1,1), (0,1) - (2,1), or (1,1) —> (2,1) is very
unlikely in a single stationary trajectory. A time series of
n data captures the statistics of jumps with probability well
above 1/n, which amounts to, say, energy jumps below
kTInn (kT 1n10°% ~ 14kT for the trajectory used in the
figures).

If, for instance, the transition (0,1) — (1,1) is missing in
the trajectory, there is no way of estimating p[(0,1); (1,1)]
which contributes to two terms in dy” [see Eq. (10) for
n = 2]. One of these two terms accounts for jumps (0,1) —
(1,1), which are very unlikely and their contribution to
the total dissipation rate is negligible, and the other term
accounts for jumps (1,1) — (0,1), whose probability is larger
and therefore contributes more significantly to the entropy
production.

In Fig. 3, c?; ¥ (blue circles) and 3; ¥ (green diamonds) have
been calculated restricting the average to sequences (of two or
three data respectively) whose reverse are also observed in the
time series, as given by Eq. (31). The sudden drops in 3; ¥ and
dyY are a consequence of lack of statistics in the trajectory.
For the specific time series used in Fig. 3, the lack of statistics
starts at BV = 10 for dy” and arises earlier for d; ¥ because
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the three-data sampling space is bigger and it is easier that
some transitions (x1,y;) — (x2,y2) — (x3,y3) do not appear
while their reverses do.

A more efficient way of dealing with the missing sequences
is incorporating a small bias to the empirical probabilities,
as described in Eq. (32). This is equivalent to assigning a
probability of order 1/n to those transitions that are not
observed in a time series of n data. Figure 3 shows J;‘y
with a bias y = 1 (blue open circles), which is able to extend
the accuracy of the estimation even when there is lack of
statistics.

Although in the case of Markovian series with a finite
number of states the most convenient strategy is to use the
plug-in estimator, we include for comparison the compression
estimator dx"Y (red squares) which gives accurate values of the
dissipation for weak potentials. Furthermore, the compression
estimator is better than some plug-in estimators even for strong
potentials, since it does not exhibit sudden jumps due to lack
of statistics.

C. Partial information

We now analyze the performance of our estimators when
there is no access to the full description of the system. As in
Ref. [9], we assume that only the position of the ratchet X is
observable. Accordingly, we simulate trajectories containing
full information, and we remove the information of the state
afterward, (x,y) — X. The resulting time series x = {x{ } is not
Markovian and hence the limit (29) is not reached for small
values of m. In this case, we proceed by obtaining c?,’;l for m as
large as possible and fit the resulting values to the ansatz (30).

We have generated trajectories of size n = 107 for values of
V that range from O to 2kT. Once we remove the information
of the state of the potential from these time series, we are
able to estimate dX up to m =9 with no lack of statistics.
Figure 4 shows the plug-in estimators dA,’,‘, form =2,3,5,7,9
and the extrapolation c?;‘o (orange pentagons connected by a
dashed line to guide the eye) resulting from the fit to the
ansatz (30). For each value of gV, we fit c?n"l as a function of
m for m = 2,3,...,9 to Eq. (30) using the curve-fitting tool
available in MATLAB, which provides a robust least-squares fit
with bisquare weights as described in Ref. [46]. The fit itself
for a particular value of the potential, BV = 1, is shown in
the inset of Fig. 4. Our ansatz reproduces the dependence of
dX with m but the final estimator ¥, still bounds significantly
from below the actual dissipation (black solid line in Fig. 4).
Nevertheless, plug-in estimators clearly distinguish between
equilibrium and the NESS, even with partial information. In
equilibrium (V = 0), the trajectories are reversible and all the
estimators vanish, c?;‘q =0form =2,...,9, whereas for the
NESS (V > 0) they detect the irreversibility of the process
yielding c?,’; > O for all m. This is illustrated in Fig. 5, where
we plot the dependence of the plug-in estimators with the
size of the trajectory. For BV =0, ﬁg,ﬁg‘, and 3;‘ tend to zero
when increasing the number of data whereas they saturate to
a positive value in the NESS (8V = 1).

There are two possible origins for the discrepancy between
c?;‘o and the dissipation: Either (i) our fit underestimates the
actual KLD rate dX of the trajectory; or (ii) the bound (12)
is not tight. To address this question we need to calculate
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FIG. 4. (Color online) Average dissipation per data in units of kT’
(black line) and plug-in estimators of d* using partial information
given by the position (X) for a discrete flashing ratchet with » = 1.
For each value of §V, we calculate estimators from a single stationary
time series of n = 107 data containing partial information: ﬁ;‘ (blue
circles), 5?3‘ (green diamonds), dAg‘ (purple stars), c?;‘ (yellow triangles),
Jg (cyan hexagons), and the result from the fit d;; (oralnge pentagons
with error bars and connected by a dashed line). Inset: d), as a function
of 1/mform =1,...,9 for BV =1 (open black circles) and the fit
to the ansatz (orange line). The y intercept of the fit is indicated by
an orange cross and it is equal to c?é‘o

the actual value of d*. Since the position of the ratchet x
is a hidden Markov chain, we can calculate its KLD rate
dX semianalytically, using the Lyapunov exponents (23), (24)
introduced in Sec. III.

InFig. 6 we show the value of the semianalytical calculation
of d¥ using the norm of transition matrices, Eq. (25), which is
not significantly different from the empirical estimation c?(’jo.
We therefore conclude that d% is a good estimation of d*,
but still ¥ only yields a lower bound to dissipation whose
accuracy is in principle hard to determine. This is an expected

10° 10°
1072 | 1
1072 b 1
) _ @
< 1w 1 =
&~ -
Q Q lo—d L
- —
4 1070 =
w~®
10—8 L
1071 10°*® -
w* 1w 1w 1w 1w 10® w 1wt 1wt 1wt 17 108
T n

FIG. 5. (Color online) Scaling of plug-in estimators of d¥, ﬁ,’;,
with the size of the time series n, for a flashing ratchet (r = 1),
for BV =0 (left) and BV =1 (right): c?%‘ (blue circles), c?;‘ (green
diamonds), and dAg‘ (purple stars). We simulate a single stationary
trajectory x of 107 data and calculate the estimators for subsequent
ones containing the first n data of x.
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FIG. 6. (Color online) Average dissipation per data in units of
kT (black line) and different estimators of d¥ for a flashing ratchet
described with partial information (r = 1, n = 107 data) as a function
of BV: 3;‘0 (orange dashed pentagons), ﬁ;‘ (red squares), replica
estimation of d* (green dotted line), and semianalytical value of
d* (yellow crosses). Inset: Dependence of the average dissipation
(black line), Lfé‘ (analytical values in blue dashed line), 3;‘, and dA;‘c on
BV in the vicinity of BV = 0.

result, since the position of a particle in a flashing ratchet does
not obey the Gallavotti-Cohen theorem [47].

Summarizing, although ﬁé‘o turns out to be a good estimator
of d*, using only information of the position we only get a
lower bound to the dissipation. We also show in Fig. 6 the
value of ﬁj‘, which is well below the plug-in estimator c?;o. The
compression estimator d* lies between d¥ and dJ (not shown in
the plot), indicating that it is only able to capture correlations
up to size 8. For completeness, we include the calculation of
d* based on the replica trick (see the Appendix). It yields a
tight bound for V < kT, but departs from d* for larger values
of V. This deviation is caused by the estimation of the limits
in Egs. (A10) and (A13), where we take « — 0 when « is
defined only for integer values, one of the standard drawbacks
of the replica trick [38].

Although our estimators give low values of the dissipation
when using partial information, they still capture the asymp-
totic behavior for V small. Entropy production decreases as V2
when V — 0, so do plug-in estimators dAf‘, . ,ﬁg‘, dAé‘o, and the
compression estimator c?;‘. Some of them are plotted in the inset
of Fig. 6 (inset). On the other hand, c?é‘ o VO, since the current
is J o V3 in this case [see Eq. (16)]. Recall that calculating
ﬁi‘ is equivalent to estimating the entropy production using
currents and standard linear irreversible thermodynamics, as
shown in Eq. (16). It is then remarkable that the estimators
involving the statistics of three or more data are able to
reproduce qualitatively the behavior of the dissipation in cases
where linear thermodynamics fails.

The improvement observed when using the plug-in estima-
tors of higher order than 3%‘ is more dramatic in a NESS which
does not exhibit observable currents in X. In this case df = 0
but using higher order statistics we can still detect the time
irreversibility of the trajectory [9]. This happens for example
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FIG. 7. (Color online) Average dissipation per data (in units of
kT) in the flashing ratchet (with r =2 and BV = 2) and different
estimations of d* obtained from a single time series of n = 107
data containing partial information (position) as a function of the
external force F: analytical value of the average dissipation (black
line), c?%‘ (blue circles, analytical values in blue dashed line), dAi‘ (green
diamonds), c?z,‘ (red squares), semianalytical calculation of d* (yellow
crosses), and ﬁ;‘o (orange hexagons). The minimum in 3;‘ corresponds
to the stalling force. Inset: d*, semianalytical value of ¥ and d¥ as
a function of the external force.

if we add to the flashing ratchet an external force F opposite to
the current, i.e., pointing in the positive x direction. The force
modifies the energy landscape and consequently the spatial
transition rates Ky, y)—(x,,y) by a factor exp[BF Ly, y).(x,,y)/2]s
L(x,,y)(x,,y) being the spatial distance that separates the two
points (x1,y) and (x,y). Here Ly, y).(x,,y) i defined positive if
the jump (x1,y) — (x2,y) points in the same direction as the
force (i.e., to the right), and negative otherwise. At the stalling
force Fya, the current is canceled by the force and the system
does not move on average when it is described only by X, but
still dissipates energy. If we only have access to the information
of the position, the system looks like it is in equilibrium:
The spatial current vanishes, and so does c?é‘, as shown in
Fig. 7. However, there is a finite dissipation (black line in the
figure) and the corresponding irreversibility is captured by the
statistics of substrings of length 3 or more. Although d¥ is
below the real dissipation by an order of magnitude (see the
semianalytical value of d*; yellow crosses in Fig. 7), it does
not exhibit any sensible change at stall force. Finally, both c?;‘o
and d* provide estimates of ¥ which are correct within one
order of magnitude (see the inset of Fig. 7).

VI. CONCLUSIONS

We have shown that it is possible to estimate the entropy
production rate by analyzing statistical properties of a time
series observed in a NESS. The Kullback-Leibler divergence
(KLD) per data between the time series and its time reversal
is a lower bound to the entropy production rate.

We have introduced two estimators of this KLLD rate, one
based on empirical frequencies and another on compression
algorithms, and we have checked their performance in a
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specific example: a discrete flashing ratchet. We show that
the KLD is a powerful tool to identify nonequilibrium states
and to estimate the entropy production of a process, if this
entropy production is of order of the Boltzmann constant. We
have also shown that the bound given by the KLD can detect
a nonzero dissipation even when the data do not exhibit any
measurable flows.

Let us summarize our results by presenting a “recipe” to
estimate the KLLD from an experimental time series recorded
from a discrete system in a NESS. If the number of possible
states of the system is small enough, the best approach is to
calculate the plug-in estimators ﬁ,’jl (28) and then check the
convergence when m increases. The possible lack of statistics
can be circumvented using a small artificial bias, as discussed
in Sec. IVA. If d* saturates for some value m*, then the
time series is an m*th-order Markov process and d* = dX..
Otherwise, we can use the ansatz (30) and obtain c?c’jo which is
a good estimate of the KLD rate.

A second and complementary approach is the use of the
compression estimator introduced in Sec. IV B. The estimator
yields correct results in the examples that we have analyzed,
but there is no clue about the corresponding error. Neverthe-
less, the compression estimator could be the only possible
approach if the number of states of the time series is large. In
this case, the calculation of empirical probability distributions
p(x{") would be unfeasible even for short substrings.

Another possible strategy for systems with many states
(or described by real-valued observables) is to consider time-
asymmetric functionals of the data, which reduce the number
of observables, and hence the number of states, but keep
information about the irreversibility of the series. In any case,
the estimation of KLD and the extension of our results to
processes described by continuous data is an open problem,
which will be relevant in many practical situations, especially
to analyze data coming from biological systems.

Finally, let us mention that, as in the case of Landauer’s
principle, the KLD could also be used to ascertain the minimal
entropy production associated with a specific behavior, such
as spatiotemporal patterns and excitable systems. This in turn
may influence the design of optimal devices with functionali-
ties given by these behaviors.
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APPENDIX: CALCULATION OF THE KLD
RATE FOR HIDDEN MARKOV CHAINS
USING REPLICA TRICK

The semianalytical calculation of the KLD rate for a specific
case of hidden Markov chains was discussed in Sec. III. We
now introduce another technique to calculate Eq. (17) using a
mathematical technique called the replica trick. To this end,
we first consider the expression of d* in terms of Shannon
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and cross entropy rates, dX = hX — h*. We define the matrix
resulting from the multiplication of m transition matrices
[defined in Eq. (20)] chosen according to x{* by

m—1

T(an) = 1_[ T(xi,x,-+1).

i=1

(AL)

The Shannon entropy rate 2% can be rewritten by substituting
(A1) into Eq. (21),

h* = — lim l(1nTrT(x;")).

m—>00 m

(A2)

The analytical calculation of the average (InTrT(x{")) is
cumbersome and it can only be done semianalytically, as we
explained in Sec. IIl. However, we can express this average
in terms of (TrT(x{")), which can be calculated analytically.
The mathematical technique to do this is called the replica
trick and it was introduced to calculate free energies in spin
glasses [48]. For our specific example, the trick is given by the
following expression:

(InTrT(x]")) = lim 4 In ([ TeT(x{")]%).

a—0 da

(A3)

Reference [39] shows how to apply this technique when T(x{")
is equal to a product of random matrices which are chosen
following a Markovian process. In our case, an underlying
Markovian process defined by two random variables, X and
Y, defines the order of the matrices that are multiplied in
T(x{"). We now apply the technique described in Ref. [39] to
calculate 1% . If we define the generalized Lyapunov exponent
of degree « [38] as

L(f = lim iln([TrT()c{")]a),

m—>00 m

(A4)

and we take into account the replica trick (A3), the Shannon
entropy rate (A2) is given by

(AS5)

Now we consider the following property: Given a matrix A
and a positive integer o, (TrA)* = Tr(A®*), where A®* =
A®A® ---® A. Using this property, the average in Eq. (A4)
—_—

a times
reads

([T (a)]) = (T () **]) = T T (") *).

Since the tensor power of a product of matrices
factorizes, (ABC)®* = A®*B®*C®¥, Eq. (A6) can be

(A6)
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rewritten
m—1
([TrT(x{”)]a> =Tr Z l_[ T(xi,xi+1)yi,yi+lT(x,-,xi+1)®°‘.
Xyt i=1

(AT)

We now define a block matrix 7 (), where each block is a
transition matrix T(x;,x,)®**!. The matrix elements of 7 (c)
are therefore

T (@, y 00y, = [Ty, (A8)
Using (A7) and (A8) in Eq. (A4), we see that Ljf is dominated
by the largest eigenvalue of 7 («) which we call (),

LY = lim llnTr[T(oz)’"_l] = Int(a), (A9)

m—o00 M

yielding

h% = —lim 4 In 7(e). (A10)
a—0 da

The above limit cannot be calculated analytically because the

tensor powers in 7 («) are only defined for integer values of «.

Therefore we approximate the limit @ — 0 by an estimation

of the slope of LY as a function of « close to & = 0, which is

given by [38]

R LX Int(2
i =21 - =X =2mnT() - nfz( ).

(A11)
We obtain an equivalent result for 2* by replacing T(x/") in
Eq. (A2) by the product of transition matrices but ordered
according to the time-reversed series x!, T(x)). Defining the
matrix

Z‘(a))ﬂ,yhxz,yz - [T(-x27-xl)T ® T(xlax2)®a]y1,yza (Alz)
and 7, («) being the largest eigenvalue of 7, («), we get
d
hY = —Olli_%aln (). (A13)

In practice, we also need to approximate the limit « — 0 in
the above equation using Eq. (A11) but replacing 7 by 7,,

A Inz,. (2
WX =2l (1) - T2
2

Finally, the estimation of d* for this kind of series using the

replica trick, which is shown in Fig. 6 (green dotted line), is
obtained with the difference between Eqs. (A14) and (Al1),
R A A (1 1 2

¥ =i — ¥ mop ) 1, 1@

(1) 2 72

(Al4)

(A15)
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