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We show that the steady-state entropy production rate of a stochastic process is inversely proportional to
the minimal time needed to decide on the direction of the arrow of time. Here we apply Wald’s sequential
probability ratio test to optimally decide on the direction of time’s arrow in stationary Markov processes.
Furthermore, the steady-state entropy production rate can be estimated using mean first-passage times
of suitable physical variables. We derive a first-passage time fluctuation theorem which implies that the
decision time distributions for correct and wrong decisions are equal. Our results are illustrated by
numerical simulations of two simple examples of nonequilibrium processes.
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Processes that take place far from thermodynamic
equilibrium are in general irreversible and are associated
with entropy production. Irreversibility implies that a
sequence of events that takes place during a process occurs
with different probability than the same sequence in time-
reversed order. Irreversibility and the thermodynamic arrow
of time can be illustrated considering a movie displaying
the evolution of a complex dynamic process. Such a movie
can be run either forward in time or in reverse. For an
irreversible process it is possible to decide whether the
movie is run forward or in reverse defining the direction of
the arrow of time by the direction in which entropy
increases on average [1]. For a system at thermodynamic
equilibrium, however, even though all atoms or molecules
move rapidly in all directions, it is impossible when
watching a movie to tell whether it runs forward or in
reverse. This raises the following question: Can the time
τdec needed to decide between two hypotheses (movie run
forward or in reverse) be related quantitatively to the degree
of irreversibility and the rate of entropy production?
Decision theory provides a general theoretical framework

to optimally make decisions based on observations of
stochastic processes [2]. An important question of decision
theory is, what is the earliest time to make a decision d
between two competing hypothesis H1 and H0 with a given
reliability, while observing a stochastic process? In 1943,
Wald made a pioneering contribution to this problem by
introducing the sequential probability ratio test (SPRT) [3],
which provides the minimal mean decision time for a broad
class of stochastic processes [4]. Wald’s SPRT states that the
decision d ¼ 1 (d ¼ 0) should be made when the cumulated
logarithm of the likelihood ratio LðtÞ for the first time
exceeds (falls below) a prescribed threshold L1 (L0) (see
Fig. 1). The thresholds L1 and L0 are determined by the

maximally allowed probabilities to make a wrong decision,
α1 ¼ Pðd ¼ 1jH0Þ and α0 ¼ Pðd ¼ 0jH1Þ. Here, α1 (α0) is
the probability to incorrectly make the decision d ¼ 1
(d ¼ 0) when the hypothesis H0 (H1) is true.
In this Letter, we derive a general relation between the

average entropy production rate in a nonequilibrium steady
state and the mean time to decide whether a stationary
stochastic process runs forward (H1) or backward in time
(H0) using the SPRT. Furthermore, we introduce a fluctuation
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FIG. 1 (color online). Log-likelihood ratio of the sequential
probability ratio test in the arrow of time as a function of time in a
drift-diffusion process with diffusion coefficient D ¼ 0.52 μm2=s
and drift velocity v ¼ 65 μm=s. The simulation time step is
Δt ¼ 0.1 ms. The thresholds of the test are shown as horizontal
lines for symmetric error probabilities equal to 20% (thin and red)
and 1% (thick and blue). The thresholds L0 and L1 correspond to
the choice of one of the two hypotheses: the sequence runs forward
(L1) or backward (L0) in time. With 20% error probability, the
decision is made faster (red circle and vertical thin red dashed line)
than for 1% error probability (blue circle and vertical thick blue
dashed line).
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theorem for the first-passage time probability distribution
of the total entropy changes and obtain a fluctuation theorem
for the decision time distribution of the SPRT in the arrow
of time. Our work reveals that entropy production can be
estimated measuring first-passage times of stationary sto-
chastic processes.
We consider a physical system in a nonequilibrium

steady state. We denote by Xt ¼ fXðsÞgts¼0 a path describ-
ing the evolution of a state as a function of time t. We
denote by ~Xt the time-reversed path ~Xt ¼ fXðt − sÞgts¼0

[5]. The state of the system is characterized by the path
probability PðXtÞ. The entropy production associated with
the path Xt can be defined as [6]

ΔStot½Xt� ¼ k ln
PðXtÞ
Pð ~XtÞ

; ð1Þ

where k is Boltzmann’s constant. We now perform a SPRTof
two hypotheses. Given a path Xt, we want to decide whether
it corresponds to a forward or time-reversed trajectory of the
nonequilibrium steady state. We therefore consider the
hypothesis H→ ¼ H1 that the path runs forward in time
with the conditional probabilityPðXtjH→Þ ¼ PðXtÞ, and the
hypothesis H← ¼ H0 that the dynamics is time reversed,
for which PðXtjH←Þ ¼ Pð ~XtÞ. Using the SPRT, the deci-
sion is madewhen the log-likelihood ratio or Turing’s weight
of evidence [7]

LðtÞ ¼ ln
PðXtjH→Þ
PðXtjH←Þ ð2Þ

reaches for the first time one of the thresholds L1 ¼ L and
L0 ¼ −L, where we have chosen for simplicity a SPRTwith
symmetric decision error probabilities α0 ¼ α1 ¼ α. When
LðtÞ is continuous, we have L ¼ ln½ð1 − αÞ=α� [3].
The entropy production and the log-likelihood ratio are

related by

LðtÞ ¼ ΔStot½Xt�
k

: ð3Þ

This provides a connection between decision theory and
stochastic thermodynamics. Moreover, it allows us to
obtain relations between average decision times in the
SPRTand the average rate of entropy production. Applying
the SPRT to continuous-time Markov processes (see
Supplemental Material [8] and Ref. [11]), we show that
the mean decision time for a stochastic process with
continuous LðtÞ is given by

hτdeci ¼
Lð1 − 2αÞ þ hLexidec

hdL=dti : ð4Þ

Here h� � �i denotes an ensemble average in steady state. An
average over the ensemble which starts from an initial

distribution of states that equals the distribution of states
at the decision times is denoted by h� � �idec. The excess
log-likelihood ratio Lex is defined as

Lex ¼
Z

∞

0

�
dL
dt0

−
�
dL
dt0

��
dt0: ð5Þ

The mean decision time of the SPRT for independent
identically distributed (i.i.d.) observations is a special case
of Eq. (4) for which hLexidec ¼ 0. This is because for an
i.i.d. process the state distribution is identical to the
stationary distribution.
We now apply the theory of decision times to the SPRT

on the arrow of time of a nonequilibrium process. The
relation (3) together with our Eq. (4) describing the average
decision time can be used to express the average entropy
production rate in steady state as

1

k

�
dStot
dt

�
¼ Lð1 − 2αÞ þ hΔSexidec=k

hτdeci
; ð6Þ

where

ΔSex ¼
Z

∞

0

�
dStot
dt0

−
�
dStot
dt0

��
dt0 ð7Þ

denotes the excess total entropy change.
In the limit of small α, the mean decision time becomes

large, hΔSexidec=hτdeci becomes small, and, thus, Eq. (6)
simplifies to

1

k

�
dStot
dt

�
≃ Lð1 − 2αÞ

hτdeci
: ð8Þ

Equations (6) and (8) show that the minimal average time
needed to decide whether a process runs forward or back-
ward in time is inversely proportional to the average entropy
production rate. Approaching thermodynamic equilibrium,
the mean decision time diverges because LðtÞ ¼ 0 in this
limit. If the reliability of the decision is increased, decision
times increase correspondingly. Because the average entropy
production rate is a property of the process only and not of
the SPRT, the ratio given in the right-hand side of Eq. (8) is
thus independent of the error probability α.
Making decisions in the arrow of time provides a novel

way to estimate the entropy production rate of nonequili-
brium Markovian processes. Estimators for the steady-state
entropy production rate can be obtained from the first-
passage times τ of a suitable physical observable ΓðXtÞ. If
we use the first passage of a physical observable through a
threshold value to decide on the arrow of time and if this
decision has an error probability α, then it follows from the
optimality of the SPRT that hτi ≥ hτdeci; i.e., the mean first-
passage time hτi is larger or equal to the mean decision time
of the SPRT given in Eq. (8). The resulting estimator of the
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entropy production provides a lower bound to the exact
value:

1

k

�
dStot
dt

�
≥
D½→ ∥←�

hτi ; ð9Þ

where D½→ ∥←� ¼ D½PðdjH→Þ∥PðdjH←Þ� ¼ ln½ð1 −
αÞ=α�ð1 − 2αÞ is the Kullback-Leibler divergence between
the conditional probabilities of the decision variable.
When decisions in the direction of time are made based
on the log-likelihood ratio, i.e., when Γ ¼ ΔStot=k, Eq. (9)
becomes an equality.
The stochastic nature of decision making in the arrow of

time can be characterized by the probability density PðτdecÞ
of making a decision at time τdec. The connection between
decision theory and thermodynamics implies a relation
between the decision time distribution and the distribution
of entropy production ΔStot. For Markovian processes, the
probability density PðΔStot; tÞ of entropy production ΔStot
during the time interval t is related by a fluctuation theorem
to the probability density to reduce entropy by the same
amount: PðΔStot; tÞ=Pð−ΔStot; tÞ ¼ expðΔStot=kÞ [12–16].
In addition, we find that the probability distribution of
the first-passage time τ of entropy production also obeys
the following detailed fluctuation theorem if the transi-
tion probabilities are translationally invariant [17] (see
Supplemental Material [8]):

Pðτ;ΔStotÞ
Pðτ;−ΔStotÞ

¼ expðΔStot=kÞ: ð10Þ

Here, Pðτ;ΔStotÞdτ denotes the probability to reach the
value ΔStot for the first time in the time interval ½τ; τ þ dτ�
given that the entropy production has not reached −ΔStot
before.
The relation between entropy production and the log-

likelihood ratio [Eq. (3)] together with the first-passage
time fluctuation theorem [Eq. (10)] implies for the SPRT in
the arrow of time

Pðτdec;LÞ
Pðτdec;−LÞ

¼ expðLÞ: ð11Þ

Here, Pðτdec;LÞ is the probability distribution of the
decision time of the SPRT for a given error rate
α: Pðτdec;LÞ is also the distribution of first-passage times
to reach the threshold L for the first time without reaching
the threshold −L before, given H→ is true. The probability
distributions in Eq. (11) are equal to the joint probability
densities to make a decision d ∈ f→;←g at time τdec,
Pðτdec;→Þ ¼ Pðτdec;LÞ, and Pðτdec;←Þ ¼ Pðτdec;−LÞ.
Equation (11) thus implies

Pðτdec;→Þ
Pðτdec;←Þ ¼ expðLÞ: ð12Þ

From Eq. (12) it follows that Pðd ¼→Þ=Pðd ¼ ←Þ ¼
expðLÞ, consistent with previous results obtained for
two-boundary first-passage time processes [18,19]. Using
Pðτdec; dÞ ¼ PðτdecjdÞPðdÞ, we then find that the condi-
tional probability densities for the decision time obey

Pðτdecj →Þ ¼ Pðτdecj←Þ: ð13Þ
This implies that even though decisions are made with
different probabilities, the conditional decision time dis-
tributions have the same shape for both outcomes. We
therefore call Eq. (13) the fluctuation theorem in the arrow
of time (FTAT). Equations (8) and (13) are the main results
of this Letter.
To illustrate how Eq. (8) provides an estimator for the

steady-state entropy production rate, we discuss two
paradigmatic examples of nonequilibrium stochastic proc-
esses. We first consider a drift-diffusion process with
periodic boundary conditions of a particle with position
xðtÞ, average drift velocity v, and diffusion coefficientD. If
Einstein’s relation holds, D ¼ kT=γ, where γ is a friction
coefficient, the steady-state entropy production rate is
hdStot=dti=k ¼ v2=D ¼ F2=ðγkTÞ, where F ¼ γv is the
friction force and T is the temperature of the thermal bath
[20]. Figure 2 shows Lð1 − 2αÞ=hτdeci obtained from 1000
numerical simulations of the SPRT in the arrow of time
(markers) as a function of the error probability α for
different values of the simulation time step Δt together
with hdStot=dti=k (blue solid line). For the drift-diffusion
process, the log-likelihood ratio for the SPRT in the arrow
of time is simply given by LðtÞ ¼ ðv=DÞ½xðtÞ − xð0Þ�. As
long as the simulation time step obeys Δt ≪ τc, where
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FIG. 2 (color online). Estimation of the steady-state entropy
production rate of a drift-diffusion process with periodic boun-
dary conditions (e.g., particle in a ring, see inset) by a sequential
probability ratio test in the arrow of time. The estimator
Lð1 − 2αÞ=hτdeci is shown as a function of the error probability
α for different simulation time steps Δt=τc and normalized by
τc ¼ 1=½hdStot=dti=k� ¼ D=v2. For the vertical axis we use the
empirical mean of τdec, and L is the threshold for the decision.
The data are obtained from 1000 numerical simulations with drift
velocity v ¼ 65 μm=s and diffusion coefficientD ¼ 0.52 μm2=s.
The horizontal line corresponds to the steady-state entropy
production rate.
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τc ¼ k=hdStot=dti ¼ D=v2, the SPRT in the arrow of time
provides an accurate estimator of entropy production inde-
pendent of the error probability α. For larger Δt, the
estimator is only accurate for small α but provides a lower
bound to the steady-state entropy production rate for larger
α. In our simulations, we also calculated empirical condi-
tional decision time probabilities Pðτdecj →Þ (green) and
Pðτdecj←Þ (purple), which are shown in Fig. 3 for α ¼ 0.01.
Figure 3 demonstrates the validity of the FTAT given in
Eq. (13) for the drift-diffusion process.
The drift-diffusion process is a simple example and serves

as an illustration of our results. We now test whether our
results also hold in more complex nonequilibrium stochastic
processes that involve discontinuous jumps of the state
variables. We therefore discuss the SPRT in the arrow of
time for the case of a flashing ratchet with periodic boundary
conditions. We consider a Brownian particle with diffusion
coefficientD, subject to a piecewise linear periodic potential
that is switched on and off stochastically at a constant rate ω
[21]. The log-likelihood ratio of the SPRT in the arrow of
time in steady state can be approximated by the cumulated
work W exerted on the particle during switches,
LðtÞ ¼ WðtÞ=kT. Here WðtÞ ¼ P

iΔVi, where ΔVi is the
potential energy change during the switching event i and the
sum is done over all switches that occur before time t [22].
Figure4 shows the estimateofLð1 − 2αÞ=hτdeci as a function
of the reliability 1 − α. The plot shows that the SPRT in the
arrow of time provides a lower bound for the steady-state
entropy production rate (blue open circles) and converges
for high reliability to the correct value. In addition, Fig. 5
shows the conditional distributions of the decision times
revealing that the FTAT holds to good approximation for
high error probabilities despite the fact that the propagator
is not translationally invariant.
When using the estimator given by Eq. (6), which includes

the excess entropy production, the entropy production rate is
estimated more accurately at low reliabilities (Fig. 4, blue

diamonds). The inset in Fig. 4 confirms that the correction
term in Eq. (6) tends to zero for α small. Note that the
estimator Lð1 − 2αÞ=hτdeci in Eq. (8) provides a lower
bound at small α because of the discontinuous jumps in
the state variables. Using an heuristic estimator given by the
ratio D½→ ∥←�=hτi, where τ is the first-passage time of the
position of the particle, also bounds from below the steady-
state entropy production, as follows from Eq. (9) (Fig. 4, red
squares).
The dynamics of a stochastic nonequilibrium process

provides evidence on the arrow of time to an observer.
Reliable decisions on the direction of the arrowof time can be
made measuring first-passage times of physical observables.
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FIG. 3 (color online). Conditional distributions of the decision
time Pðτdecj →Þ and Pðτdecj←Þ obtained from 106 numerical
simulations of a drift-diffusion process with diffusion D ¼
0.52 μm2=s and drift v ¼ 65 μm=s. The simulation time step
is Δt ¼ 0.1 ms and the error probability α ¼ 0.01.
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FIG. 4 (color online). Estimation of the entropy production rate
using the SPRT in the arrow of time in a flashing ratchet model
using the right-hand side in Eq. (8) (blue open circles) and the
right-hand side in Eq. (6) (blue open diamonds) as a function of
the reliability of the test. Red open squares are given by the ratio
between D½→ ∥←� and the mean first-passage time hτi of the
position of the particle in Eq. (9). The results were obtained from
1000 numerical simulations with time step Δt ¼ 1 μs, diffusion
coefficient D ¼ 1 μm2=ms, V0 ¼ 10 kT, a ¼ 1=3 μm, and
ω ¼ 10 kHz. The characteristic time τc ¼ 0.07 ms is the numeri-
cal estimate of k=hdStot=dti obtained from a single stationary
trajectory of 107 data points. Inset: Correction term in Eq. (6)
given by ½hΔSexidec=khτdeci�τc as a function of 1 − α (blue
triangles). The solid line is a linear fit of the data.
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FIG. 5 (color online). Conditional distributions of the decision
time Pðτdecj →Þ and Pðτdecj←Þ obtained from 106 numerical
simulations of the flashing ratchet with the same simulation
parameters as in Fig. 4. The two figures show the distributions for
two different error probabilities α.
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When thephysical observable used is the entropyproduction,
the decision time is minimized. In addition, measuring first-
passage times of physical observables provides estimators
for the steady-state entropy production rate that are lower
bounds to the true value. This follows from the optimality of
the SPRT. Using this method to estimate entropy production,
it is not necessary to sample the whole space of stochastic
trajectories as required in previous approaches [23–25].
Interestingly, our fluctuation theorem for the two-boundary
first-passage time distribution of entropy production
[Eq. (10)] implies that the shape of the distributions of
decision times for correct andwrong decisions are equal even
though the probabilities in both cases are different. The
connection between decision theory and thermodynamics
provided here could be of particular interest in the context of
nonequilibrium processes that involve feedback control,
often found in biology and engineering.
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