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Path-integral formalism for stochastic resetting:
Exactly solved examples and shortcuts to confinement
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We study the dynamics of overdamped Brownian particles diffusing in conservative force fields and undergoing
stochastic resetting to a given location at a generic space-dependent rate of resetting. We present a systematic
approach involving path integrals and elements of renewal theory that allows us to derive analytical expressions
for a variety of statistics of the dynamics such as (i) the propagator prior to first reset, (ii) the distribution of the
first-reset time, and (iii) the spatial distribution of the particle at long times. We apply our approach to several
representative and hitherto unexplored examples of resetting dynamics. A particularly interesting example for
which we find analytical expressions for the statistics of resetting is that of a Brownian particle trapped in a
harmonic potential with a rate of resetting that depends on the instantaneous energy of the particle. We find
that using energy-dependent resetting processes is more effective in achieving spatial confinement of Brownian
particles on a faster time scale than performing quenches of parameters of the harmonic potential.
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I. INTRODUCTION

Changes are inevitable in nature, and those that are most
dramatic, with often drastic consequences, are the ones that
occur all of a sudden. A particular class of such changes com-
prises those in which the system during its temporal evolution
makes a sudden jump (a “reset”) to a fixed state or con-
figuration. Many nonequilibrium processes are encountered
across disciplines, e.g., in physics, biology, and information
processing, which involve sudden transitions between different
states or configurations. The erasure of a bit of information
[1,2] by mesoscopic machines may be thought of as a physical
process in which a memory device that is strongly affected
by thermal fluctuations resets its state (0 or 1) to a prescribed
erasure state [3–7]. In biology, resetting plays an important
role inter alia in the sensing of extracellular ligands by
single cells [8] and in the transcription of genetic information
by macromolecular enzymes called RNA polymerases [9].
During RNA transcription, the recovery of RNA polymerases
from inactive transcriptional pauses is the result of a kinetic
competition between diffusion and resetting of the polymerase
to an active state via RNA cleavage [9], as has been recently
tested in high-resolution single-molecule experiments [10].
Also, there are ample examples of biochemical processes that
initiate (i.e., reset) at random so-called stopping times [11–13],
with the initiation in each instance occurring in different
regions of space [14]. In addition, interactions play a key role
in determining when and where a chemical reaction occurs
[11], a fact that affects the statistics of the resetting process.
For instance, in the above-mentioned example of recovery of
RNA polymerase by the process of resetting, the interaction
of the hybrid DNA-RNA may alter the time that a polymerase
takes to recover from its inactive state [15]. It is therefore quite
pertinent and timely to study resetting of mesoscopic systems
that evolve under the influence of external or conservative
force fields.

*Corresponding author: edgar@pks.mpg.de

Simple diffusion subject to resetting to a given location at
random times has emerged in recent years as a convenient
theoretical framework in which to discuss the phenomenon
of stochastic resetting [16–21]. The framework was later
generalized to consider different choices of the resetting
position [22,23], resetting of continuous-time random walks
[24,25], Lévy [26] and exponential constant-speed flights
[27], time-dependent resetting of a Brownian particle [28],
and discussion of memory effects [29] and phase transitions
in reset processes [30]. Stochastic resetting has also been
invoked in the context of many-body dynamics, e.g., in
reaction-diffusion models [31], fluctuating interfaces [32,33],
interacting Brownian motion [34], and discussion of optimal
search times in a crowded environment [35–38]. However,
little is known about the statistics of stochastic resetting of
Brownian particles that diffuse under the influence of force
fields [39]—and that too in the presence of a rate of resetting
that varies with space.

In this paper, we study the dynamics of overdamped
Brownian particles immersed in a thermal environment, which
diffuse under the influence of a force field and whose position
may be stochastically reset to a given spatial location at a rate
of resetting that has an essential dependence on space. We
use an approach that allows us to obtain exact expressions
for the transition probability prior to the first reset, the first
reset-time distribution, and, most importantly, the stationary
spatial distribution of the particle. The approach is based on a
combination of the theory of renewals [40] and the Feynman-
Kac path-integral formalism of treating stochastic processes
[41–44] and consists in a mapping of the dynamics of the
Brownian resetting problem to a suitable quantum mechanical
evolution in imaginary time. We note that the Feynman-Kac
formalism has been applied extensively in the past to discuss
dynamical processes involving diffusion [45] and has, to the
best of our knowledge, not been applied to discuss stochastic
resetting. To demonstrate the utility of the approach, we
consider several stochastic resetting problems (see Fig. 1):
(i) free Brownian particles subject to a space-independent rate
of resetting [Fig. 1(a)]; (ii) free Brownian particles subject to
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FIG. 1. Stochastic resetting of Brownian particles moving in force fields and subject to stochastic resetting at a rate that may depend on the
space. Illustration of the motion of a single overdamped Brownian particle (gray sphere) that diffuses in two dimensions (x,y) in the presence
of a conservative potential V (x,y). The particle traces a stochastic trajectory (black curve) in the two-dimensional space until its position is
reset at a random instant in time to its initial value (orange arrow); subsequent to the reset, the particle resumes its stochastic motion until the
next reset happens. The rate of resetting r(x,y) (left color bar) may depend on the position of the particle. We study three scenarios: (a) resetting
of free Brownian particles under a space-independent rate of resetting; (b) resetting of free Brownian particles under a space-dependent rate of
resetting; and (c) resetting of Brownian particles moving in force fields under a space-dependent rate of resetting.

resetting at a rate that depends quadratically on the distance to
the origin [Fig. 1(b)]; and (iii) Brownian particles trapped in
a harmonic potential and undergoing reset events at a rate that
depends on the energy of the particle [Fig. 1(c)]. In this paper,
we consider for purposes of illustration the corresponding
scenarios in one dimension, although our general approach
may be extended to higher dimensions. Remarkably, we obtain
exact analytical expressions in all cases, notably, in cases ii and
iii, where a standard treatment of the analytic solution using
the Fokker-Planck approach may appear daunting, and whose
relevance in physics may be explored in the context of, e.g.,
optically trapped colloidal particles and hopping processes in
glasses and gels. We further explore the dynamical properties
in case iii and compare the relaxation properties of dynamics
corresponding to potential energy quenches and due to sudden
activation of space-dependent stochastic resetting.

II. GENERAL FORMALISM

A. Model of study: Resetting of Brownian
particles diffusing in force fields

Consider an overdamped Brownian particle diffusing in one
dimension x in the presence of a time-independent force field
F (x) = −∂xV (x), with V (x) denoting the potential energy
landscape. The dynamics of the particle is described by a
Langevin equation of the form

dx

dt
= μF (x) + η(t), (1)

where μ is the mobility of the particle, defined as the velocity
per unit force. In Eq. (1), η(t) is a Gaussian white noise, with
the properties

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2Dδ(t − t ′), (2)

where 〈 · 〉 denotes the average over noise realizations and
D>0 is the diffusion coefficient of the particle, with the
dimension of length squared over time. We assume that
the Einstein relation holds: D = kBT μ, with T being the
temperature of the environment and kB being the Boltzmann
constant. In addition to the dynamics, (1), the particle is subject
to a stochastic resetting dynamics with a space-dependent
resetting rate r(x), whereby, while at position x at time t ,
the particle in the ensuing infinitesimal time interval dt either

follows the dynamics, (1), with probability 1 − r(x)dt or resets
to a given reset destination x(r) with probability r(x)dt . Our
analysis holds for any arbitrary reset function r(x), with the
only obvious constraint r(x) � 0 ∀ x; moreover, the formalism
may be generalized to higher dimensions. In the following, we
consider the reset location to be the same as the initial location
x0 of the particle, that is, x(r) = x0.

A quantity of obvious interest and relevance is the spatial
distribution of the particle: What is the probability P (x,t |x0,0)
that the particle is at position x at time t , given that its initial
location is x0? From the dynamics given in the preceding
paragraph, it is straightforward to write the time evolution
equation of P (x,t |x0,0),

∂P (x,t |x0,0)

∂t

= −μ
∂(F (x)P (x,t |x0,0))

∂x
+ D

∂2P (x,t |x0,0)

∂x2

− r(x)P (x,t |x0,0) +
∫

dyr(y)P (y,t |x0,0)δ(x − x0),

(3)

where the first two terms on the right-hand side account for
the contribution from the diffusion of the particle in the force
field F (x), while the last two terms stand for the contribution
owing to the resetting of the particle: the third term represents
the loss in probability arising from the resetting of the particle
to x0, while the fourth term denotes the gain in probability at
location x0 owing to resetting from all locations x �= x0. When
it exists, the stationary distribution Pst(x|x0) satisfies

0 = −μ
∂(F (x)Pst(x|x0))

∂x
+ D

∂2Pst(x|x0)

∂x2

− r(x)Pst(x|x0) +
∫

dyr(y)Pst(y|x0)δ(x − x0). (4)

It is evident that solving for either the time-dependent
distribution P (x,t |x0,0) or the stationary distribution Pst(x|x0)
from Eq. (3) or (4), respectively, is a formidable task even with
F = 0, unless the function r(x) has simple forms. For example,
in Ref. [17], the authors considered a solvable example with
F (x) = 0, where the function r(x) is 0 in a window around x0

and is constant outside the window.
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In this work, we employ a different approach to solve for
the stationary spatial distribution, by invoking the path-integral
formalism of quantum mechanics and by using elements of the
theory of renewals. In this approach, we compute Pst(x|x0),
the stationary distribution in the presence of reset events, in
terms of suitably defined functions that take into account the
occurrence of trajectories that evolve without undergoing any
reset events in a given time; see Eq. (30) below. This approach
provides a viable alternative to obtaining the stationary spatial
distribution by solving the Fokker-Planck equation, (4), which
explicitly takes into account the occurrence of trajectories
that evolve while undergoing reset events in a given time. As
we demonstrate below, the method allows us to obtain exact

expressions even in cases with nontrivial forms of F (x) and
r(x).

B. Path-integral approach to stochastic resetting

Here, we invoke the well-established path-integral approach
based on the Feynman-Kac formalism to discuss stochastic
resetting. To proceed, let us first consider a representation of
the dynamics in discrete times ti = i�t , with i = 0,1,2, . . .

and �t > 0 being a small time step. The dynamics in discrete
times involves the particle at position xi at time ti either to reset
and be at x(r) at the next time step ti+1 with probability r(xi)�t

or to follow the dynamics given by Eq. (1) with probability 1 −
r(xi)�t . The position of the particle at time ti is thus given by

xi =
{
xi−1 + �t(μF̄ (xi) + ηi) with probability 1 − r(xi−1)�t,

x(r) with probability r(xi−1)�t,
(5)

where we have defined F̄ (xi) ≡ (F (xi−1) + F (xi))/2 and
have used the Stratonovich rule in discretizing the dynamics,
(1), and where the time-discretized Gaussian white noise ηi

satisfies

〈ηiηj 〉 = σ 2δij , (6)

with σ 2 a positive constant with the dimension of length
squared over time squared. In particular, the joint probability
distribution of the occurrence of a given realization {ηi}1�i�N

of the noise, with N being a positive integer, is given by

P [{ηi}] =
(

1

2πσ 2

)N/2

exp

(
− 1

2σ 2

N∑
i=1

η2
i

)
. (7)

In the absence of any resetting and forces, the displacement of
the particle at time t ≡ N�t from the initial location is given
by �x ≡ xN − x0 = �t

∑N
i=1 ηi , so that the mean-squared

displacement is 〈(�x)2〉 = σ 2N (�t)2. In the continuous-time
limit, N → ∞, �t → 0, keeping the product N�t fixed and
finite and equal to t , the mean-squared displacement becomes
〈(�x)2〉 = 2Dt , with D ≡ limσ→∞,�t→0 σ 2�t/2.

1. The propagator prior to first reset

What is the probability of occurrence of particle trajectories
that start at position x0 and end at a given location x at time t =
N�t without undergoing any reset event? From the discrete-
time dynamics given by Eq. (5) and the joint distribution, (7),
the probability of occurrence of a given particle trajectory
{xi}0�i�N ≡ {x0,x1,x2, . . . ,xN−1,xN = x} is given by

Pno res[{xi}]

= det(J )

(
1

2πσ 2

)N/2

×
N∏

i=1

exp

(
− (xi − xi−1−μF̄ (xi)�t)2

2σ 2(�t)2

)

×
N−1∏
i=0

(1−r(xi)�t). (8)

Here, the factor
∏N−1

i=0 (1 − r(xi)�t) enforces the condition
that the particle has not reset at any of the instants ti ,
i = 0,1,2, . . . ,N − 1, while J is the Jacobian matrix for the
transformation {ηi} → {xi}, which is obtained from Eq. (5)
as J1�i,j�N ≡ ( ∂ηi

∂xj
) or, equivalently,

J =

⎛⎜⎜⎝
1

�t
− μF ′(x1)

2 0 0 . . .

− 1
�t

− μF ′(x1)
2

1
�t

− μF ′(x2)
2 0 . . .

...
...

...
...

⎞⎟⎟⎠
N×N

, (9)

with primes denoting derivative with respect to x. One thus has

det(J ) =
(

1

�t

)N N∏
i=1

(
1 − �tμF ′(xi)

2

)



(

1

�t

)N

exp

(
−

N∑
i=1

�tμF ′(xi)

2

)
, (10)

where, in obtaining the last step, we have used the smallness
of �t . Thus, for small �t , we get

Pno res[{xi}]

=
(

1

2πσ 2(�t)2

)N/2

×
N∏

i=1

exp

(
− (xi − xi−1 − μF̄ (xi)�t)2

2σ 2(�t)2
−�tμF ′(xi)

2

)

×
N−1∏
i=0

exp (−r(xi)�t)

=
(

1

2πσ 2(�t)2

)N/2

exp(�t[r(xN ) − r(x0)])

× exp

(
−�t

N∑
i=1

[
[(xi − xi−1 − μF̄ (xi)�t)/�t]2

2σ 2�t

+ μF ′(xi)

2
+ r(xi)

])
. (11)
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From Eq. (11), it follows by considering all possible
trajectories that the probability density that the particle, while
starting at position x0, will end at a given location x at time
t = N�t without having undergone any reset event is given by

Pno res(x,t |x0,0)

=
(

1

2πσ 2(�t)2

)N/2

exp(�t[r(x) − r(x0)])

×
N−1∏
i=1

∫ ∞

−∞
dxi

× exp

(
−�t

N∑
i=1

[
[(xi − xi−1 − μF̄ (xi)�t)/�t]2

2σ 2�t

+ μF ′(xi)

2
+ r(xi)

])
. (12)

In the limit of continuous time, defining Dx(t) ≡
limN→∞ ( 1

4πD�t
)
N/2 ∏N−1

i=1

∫ ∞
−∞ dxi, one gets the exact

expression for the corresponding probability density as the
path integral

Pno res(x,t |x0,0) =
∫ x(t)=x

x(0)=x0

Dx(t) exp (−Sres[{x(t)}]), (13)

where, on the right-hand side of Eq. (13), we have introduced
the resetting action as

Sres[{x(t)}] =
∫ t

0
dt

[
[(dx/dt) − μF (x)]2

4D
+μF ′(x)

2
+r(x)

]
.

(14)

Invoking the Feynman-Kac formalism, we identify the path
integral on the right-hand side of Eq. (13) with the propagator
of a quantum mechanical evolution in (negative) imaginary
time due to a quantum Hamiltonian Hq , to get

Pno res(x,t |x0,0) = exp

(
μ

2D

∫ x

x0

F (x)dx

)
Gq(x, − it |x0,0),

(15)
with

Gq(x, − it |x0,0) ≡ 〈x| exp(−Hqt)|x0〉, (16)

where the quantum Hamiltonian is

Hq ≡ − 1

2mq

∂2

∂x2
+ Vq(x), (17)

the mass in the equivalent quantum problem is

mq ≡ 1

2D
, (18)

and the quantum potential is given by

Vq(x) ≡ μ2(F (x))2

4D
+ μF ′(x)

2
+ r(x). (19)

Note that in the quantum propagator in Eq. (16), Planck’s
constant has been set to unity, h̄ = 1, while the time τ of
propagation is imaginary: τ = −it [46]. Since the Hamiltonian

contains no explicit time dependence, the propagator
Gq(x, − it |x0,0) is effectively a function of the time t it
takes to propagate from the initial location x0 to the final
location x, and not individually of the initial and final times.
Let us note that, using D = kBT μ, the prefactor equals
exp (−Q(t)/2kBT ), where Q(t) ≡ ∫ x

x0
∂xV (x) dx is the heat

absorbed by the particle from the environment along the
trajectory {x(t)} [47,48].

2. Distribution of the first-reset time

Let us now determine the probability of occurrence of
trajectories that start at position x0 and reset for the first time
at time t . In terms of Pno res(x,t |x0,0), one gets this probability
density as

Pres(t |x0) =
∫ ∞

−∞
dyr(y)Pno res(y,t |x0,0), (20)

since, by the very definition of Pres(t |x0), a reset has to
happen only at the final time t when the particle has reached
the location y, where y may in principle take any value in
the interval [−∞,∞]. The probability density Pres(t |x0) is
normalized as

∫ ∞
0 dtPres(t |x0) = 1.

3. Spatial time-dependent probability distribution

Using renewal theory, we now show that knowing
Pno res(x,t |x0,0) and Pres(t |x0) is sufficient to obtain the spatial
distribution of the particle at any time t . The probability density
that the particle is at x at time t when starting from x0 is given
by

P (x,t |x0,0)

= Pno res(x,t |x0,0)

+
∫ t

0
dτ

∫ ∞

−∞
dyr(y)P (y,t−τ |x0,0)Pno res(x,t |x0,t−τ )

= Pno res(x,t |x0,0)

+
∫ t

0
dτR(t − τ |x0)Pno res(x,t |x0,t − τ ), (21)

where we have defined the probability density of resetting at
time t as

R(t |x0) ≡
∫ ∞

−∞
dyr(y)P (y,t |x0,0). (22)

One may easily understand Eq. (21) by invoking the theory of
renewals [40] and realizing that the dynamics is renewed each
time the particle resets to x0. This may be seen as follows. The
particle starting from x0 may reach x at time t by experiencing
not a single reset; the corresponding contribution to the spatial
distribution is given by the first term on the right-hand side
of Eq. (21). The particle may also reach x at time t by
experiencing the last reset event (i.e., the last renewal) at time
t − τ , with τ ∈ [0,t], and then propagating from the reset
location x(r) = x0 to x without experiencing any further reset,
where the last reset may take place at rate r(y) from any
location y ∈ [−∞,∞] where the particle happened to be at
time t − τ ; such contributions are represented by the second
term on the right-hand side of Eq. (21). The spatial distribution
is normalized as

∫ ∞
−∞ dxP (x,t |x0,0) = 1 for all possible values

of x0 and t .
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Multiplying both sides of Eq. (21) by r(x) and then
integrating over x, we get

R(t |x0) =
∫ ∞

−∞
dxr(x)Pno res(x,t |x0,0)

+
∫ t

0
dτ

[∫ ∞

−∞
dxr(x)Pno res(x,t |x0,t − τ )

]
×R(t − τ |x0). (23)

The bracketed quantity on the right-hand side of (23) is nothing
but Pres(τ |x0), so we get

R(t |x0) = Pres(t |x0) +
∫ t

0
dτPres(τ |x0)R(t − τ |x0). (24)

Taking the Laplace transform on both sides of Eq. (24), we get

R̃(s|x0) = P̃res(s|x0) + P̃res(s|x0)R̃(s|x0), (25)

where R̃(s|x0) and P̃res(s|x0) are, respectively, the Laplace
transforms of R(t |x0) and Pres(t |x0). Solving for R̃(s|x0) from
Eq. (25) yields

R̃(s|x0) = P̃res(s|x0)

1 − P̃res(s|x0)
. (26)

Next, taking the Laplace transform with respect to time on
both sides of Eq. (21), we obtain

P̃ (x,s|x0,0) = (1 + R̃(s|x0))P̃no res(x,s|x0)

= P̃no res(x,s|x0)

1 − P̃res(s|x0)
, (27)

where we have used Eq. (26) to obtain the last equality.
An inverse Laplace transform of Eq. (27) yields the time-
dependent spatial distribution P (x,t |x0,0).

4. Stationary spatial distribution

Upon applying the final value theorem, one may obtain the
stationary spatial distribution as

Pst(x|x0) = lim
s→0

sP̃ (x,s|x0,0) = lim
s→0

s
P̃no res(x,s|x0)

1 − P̃res(s|x0)
, (28)

provided the stationary distribution [i.e., limt→∞ P (x,t |x0,0)]
exists. Now, since Pres(t |x0) is normalized to unity,∫ ∞

0 dtPres(t |x0) = 1, we may expand its Laplace transform to
leading orders in s as P̃res(s|x0) ≡ ∫ ∞

0 dt exp(−st)Pres(t |x0) =
1 − s〈t〉res + O(s2), provided that the mean first-reset time
〈t〉res, defined as

〈t〉res ≡
∫ ∞

0
dt tPres(t |x0), (29)

is finite. Similarly, we may expand P̃no res(x,s|x0,0)
to leading orders in s as P̃no res(x,s|x0,0) =∫ ∞

0 dtPno res(x,t |x0,0) − s
∫ ∞

0 dt tPno res(x,t |x0,0) + O(s2),
provided that

∫ ∞
0 dt tPno res(x,t |x0,0) is finite. From Eq. (28),

we thus find the stationary spatial distribution to be given by
the integral over all times of the propagator prior to first reset
divided by the mean first-reset time:

Pst(x|x0) = 1

〈t〉res

∫ ∞

0
dtPno res(x,t |x0,0). (30)

III. EXACTLY SOLVED EXAMPLES

A. Free particle with space-independent resetting

Let us first consider the simplest case of free diffusion at a
space-independent rate of resetting r(x) = r , with r a positive
constant having the dimension of inverse time. Here, upon
using Eq. (15) with F (x) = 0, we have

Pno res(x,t |x0,0) = Gq(x, − it |x0,0)

= 〈x| exp(−Hqt)|x0〉, (31)

where the quantum Hamiltonian is in this case, following
Eqs. (17)–(19), given by

Hq = − 1

2mq

∂2

∂x2
+ r, mq = 1

2D
, h̄ = 1. (32)

Since in the present situation, the effective quantum potential
Vq(x) = r is space independent, we may rewrite Eq. (31) as

Pno res(x,t |x0,0) = exp(−rt)Gq(x, − it |x0,0), (33)

with

Gq(x, − it |x0,0) ≡ 〈x| exp(−Hqt)|x0〉, (34)

where the quantum Hamiltonian is now that of a free particle:

Hq ≡ − 1

2mq

∂2

∂x2
, mq = 1

2D
, h̄ = 1. (35)

Therefore, the statistics of resetting of a free particle under
a space-independent rate of resetting may be found from the
quantum propagator of a free particle, which is given by [42]

Gq(x,τ |x0,0) =
√

mq

2πh̄iτ
exp

(
−mq(x − x0)2

2h̄iτ

)
. (36)

Plugging into Eq. (36) the parameters in Eq. (35) together with
τ = −it , we have

Gq(x, − it |x0,0) = 1√
4πDt

exp

(
− (x − x0)2

4Dt

)
. (37)

Using Eq. (37) in Eq. (33), we thus obtain

Pno res(x,t |x0,0) = exp(−rt)√
4πDt

exp

(
− (x − x0)2

4Dt

)
, (38)

and hence, the distribution of the first-reset time may be found
upon using Eq. (20),

Pres(t |x0) = r exp(−rt)
1√

4πDt

∫ ∞

−∞
dxexp

(
− (x − x0)2

4Dt

)
= r exp(−rt), (39)

which is normalized to unity,
∫ ∞

0 dtPres(t |x0) = 1, as expected.
Using Eq. (39), we get P̃res(s|x0) = r/(s + r), so that

Eq. (26) yields R̃(s|x0) = r/s. An inverse Laplace transform
yields R(t |x0) = r , as also follows from Eq. (22) by substitut-
ing r(y) = r and noting that P (y,t |x0,0) is normalized with
respect to y.
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Next, the probability density that the particle is at x at time
t , when starting from x0, is obtained upon using Eq. (21) as

P (x,t |x0,0) = exp(−rt)√
4πDτ

exp (−(x − x0)2/(4Dt))

+ r

∫ t

0
dτ

exp(−rτ )√
4πDτ

exp (−(x − x0)2/(4Dτ )).

(40)

Taking the limit t → ∞, we obtain the stationary spatial
distribution as

Pst(x|x0) = r

∫ ∞

0
dτ exp(−rτ )

exp (−(x − y)2/(4Dτ ))√
4πDτ

,

(41)

which may also be obtained by using Eqs. (30) and (38) and,
also, Eq. (39), which implies that 〈t〉res = 1/r . From Eq. (40),
we obtain an exact expression for the time-dependent spatial
distribution as

P (x,t |x0,0) = exp(−rt) exp (−(x − x0)2/4Dt)√
4πDt

+
exp

(−|x−x0|√
D/r

)
erfc

( |x−x0|√
4Dt

− √
rt

)
√

4D/r

−
exp

( |x−x0|√
D/r

)
erfc

( |x−x0|√
4Dt

+ √
rt

)
√

4Dt
, (42)

while Eq. (41) yields the exact stationary distribution as

Pst(x|x0) = 1

2
√

D/r
exp

(
−|x − x0|√

D/r

)
, (43)

where erfc(x) ≡ (2/
√

π )
∫ ∞
x

dt exp(−t2) is the complemen-
tary error function. The stationary distribution, (43), may be
put in the scaling form

Pst(x|x0) = 1

2
√

D/r
R

( |x − x0|√
D/r

)
, (44)

where the scaling function is given by R(y) ≡ exp(−y).
For the particular case x0 = 0, Eq. (43) matches the result
derived in Ref. [16]. Note that the steady-state distribution,
(44), exhibits a cusp at the resetting location x0. Since the
resetting location is taken to be the same as the initial location,
over time the particle visits the initial location repeatedly,
thereby keeping a memory of the latter that makes an explicit
appearance even in the long-time stationary state.

B. Free particle with “parabolic” resetting

We now study the dynamics of a free Brownian particle
whose position is reset to the initial position x0 at a rate
of resetting that is proportional to the square of the current
position of the particle. In this case, we have r(x) = αx2,
with α > 0 having the dimension of 1/((Length)2Time). From
Eqs. (15) and (16), and given that in this case F (x) = 0,

we get

Pno res(x,t |x0,0) = Gq(x, − it |x0,0) = 〈x| exp(−Hqt)|x0〉,
(45)

with the Hamiltonian obtained from Eq. (17) by setting
Vq(x) = αx2:

Hq = − 1

2mq

∂2

∂x2
+ αx2, mq = 1

2D
, h̄ = 1. (46)

We thus see that the statistics of resetting of a free particle
subject to a “parabolic” rate of resetting may be found from
the propagator of a quantum harmonic oscillator. Following
Schulman [42], a quantum harmonic oscillator with the
Hamiltonian given by

Hq = − 1

2mq

∂2

∂x2
+ 1

2
mqω

2
qx

2, (47)

with mq and ωq being the mass and the frequency of the
oscillator, has the quantum propagator

Gq(x,τ |x0,0)

=
√

mqωq

2iπh̄ sin ωqτ

× exp

(
iωq

2h̄ sin ωqτ

[(
x2 + x2

0

)
cos ωqτ − 2xx0

])
.

(48)

Using the parameters given in Eq. (46) and substituting
τ = −it and ωq = √

4Dα in Eq. (48), we have

Gq(x, − it |x0,0)

= (α/D)1/4√
2π sinh(t

√
4Dα)

× exp

(
−

√
α/D

2 sinh(t
√

4Dα)

[(
x2

0 + y2
)

× cosh(t
√

4Dα) − 2xx0
])

. (49)

We may now derive the statistics of resetting using the
propagator, (49). Equation (45) together with Eq. (49) implies

Pno res(x,t |x0,0)

= (α/D)1/4√
2π sinh(t

√
4Dα)

× exp

(
−

√
α/D

2 sinh(t
√

4Dα)

[(
x2

0 + x2
)

× cosh(t
√

4Dα) − 2x0x
])

. (50)
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Integrating Eq. (50) over x, we get the distribution of the
first-reset time as

Pres(t |x0)

=
∫ ∞

−∞
dyr(y)Pno res(y,t |x0,0)

= α(α/D)1/4√
sinh(t

√
4Dα)

exp

(
−x2

0

√
α/D

2
tanh(t

√
4Dα)

)

×
√

α/D coth(t
√

4Dα) + x2
0 (α/D)cosech2(t

√
4Dα)

(α/D)5/4 coth5/2(t
√

4Dα)
.

(51)

For the case x0 = 0, Eqs. (50) and (51) reduce to simpler
expressions:

Pno res(x,t |x0 = 0,0)

= (α/D)1/4√
2π sinh(t

√
4Dα)

exp

(
−x2√α/D coth(t

√
4Dα)

2

)
(52)

and

Pres(t |x0 = 0) =
√

Dα
(tanh(t

√
4Dα))3/2√

sinh(t
√

4Dα)
. (53)

Equation (53) may be put in the scaling form

Pres(t |x0 = 0) =
√

Dα G(t
√

4Dα), (54)

with G(y) = tanh(y)3/2/
√

sinh(y). Equation (53) yields the
mean first-reset time 〈t〉res for x0 = 0, given by

〈t〉res = (�(1/4))2

4
√

2πDα
, (55)

where � is the gamma function. Equations (53) and (55) yield
the stationary spatial distribution upon using Eq. (30),

Pst(x|x0 = 0)

= 4
√

Dα(α/D)1/4

(�(1/4))2

×
∫ ∞

0

dt√
sinh(t

√
4Dα)

× exp

(
− x2√α/D coth(t

√
4Dα)

2

)

= 23/4(α/D)1/4

√
π�(1/4)

(
x2√α/D

2

)1/4

K1/4

(
x2√α/D

2

)
, (56)

where Kn(x) is the nth-order modified Bessel function of
the second kind. Equation (56) implies that the stationary
distribution is symmetric around x = 0, which is expected
since the resetting rate is symmetric around x0 = 0. The
stationary distribution, (56), may be put in the scaling form

Pst(x|x0 = 0) = 23/4(α/D)1/4

√
π�(1/4)

R
(

x

(D/α)1/4

)
, (57)

 0

 0.1
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FIG. 2. Theory versus simulation results for the stationary spatial
distribution of a free Brownian particle undergoing parabolic reset-
ting. Circles denote simulation results, while the line represents the
exact analytical expression given in Eq. (56). Numerical results were
obtained from 104 independent simulations of the Langevin dynamics
described in Sec. II A. Error bars associated with the data points are
smaller than the symbol size. Parameter values are D = 1.0, α = 0.5.

where the scaling function is given by R(y) =
(y2/2)1/4K1/4(y2/2).

The result, (56), is checked in simulations in Fig. 2. The
simulations involved numerically integrating the dynamics
described in Sec. II A, with the integration time step equal
to 0.01. Using

∫ ∞
0 dt tμ−1Kν(t) = 2μ−2�(μ

2 − ν
2 )�(μ

2 + ν
2 ) for

|Reν| < |Reμ| [49], we find that Pst(x|x0 = 0), given by
Eq. (56), is correctly normalized to unity. Moreover, using the

results that as x → 0, we have Kν(x) = �(ν)
2 ( x

2 )
−ν

for Re ν > 0,

and that as x → ∞, we have Kν(x) = ( π
2x

)
1/2

exp(−x) for real
x [49], we get

Pst(x|x0 = 0) ∼
{

(α/D)1/4√
π

for x → 0,

exp(−x2√α/D/2) for |x| → ∞.

(58)

Using Eq. (56) and the result dK1/4(x)/dx = −(1/2)
(K3/4(x) + K5/4(x)), it may be easily shown that as x → 0±,
one has dPst(x|x0 = 0))/dx = ∓√

α/D�(3/4)/(
√

π�(1/4)),
thereby implying that the first derivative of Pst(x|x0 = 0) is
discontinuous at x = 0. We thus conclude that the spatial
distribution Pst(x|x0 = 0) exhibits a cusp singularity at x = 0.
This feature of cusp singularity at the resetting location
x0 = 0 is also seen in the stationary distribution, (43), and
is a signature of the steady state being a nonequilibrium one
[16,21,32,33]. Note the existence of faster-than-exponential
tails suggested by Eq. (58) in comparison to the exponential
tails observed in the case of resetting at a constant rate, see
Eq. (43). This is consistent with the fact that with respect to
the case of resetting at a space-independent rate, a parabolic
rate of resetting implies that the farther the particle is from
x0 = 0, the more enhanced is the probability that a resetting
event takes place and, hence, the lower is the probability of
finding the particle far away from the resetting location.
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Let us consider the case of an overdamped Brownian par-
ticle that is trapped in a harmonic potential V (x) = (1/2)κx2,
with κ > 0, and is undergoing Langevin dynamics, (1). At
equilibrium, the distribution of the position of the particle is
given by the Boltzmann-Gibbs distribution

Peq(x) = exp(−κx2/2kBT )/Z, (59)

with Z = √
2πkBT /κ being the partition function. Comparing

Eqs. (58) and (59), we see that using a harmonic potential with
a suitable κ , the stationary distribution of a free Brownian
particle undergoing parabolic resetting may be made to match
in the tails with the stationary distribution of a Brownian
particle trapped in the harmonic potential and evolving in
the absence of any resetting. On the other hand, the cusp
singularity in the former cannot be achieved with Langevin
dynamics in any harmonic potential without the inclusion of
resetting events.

Let us note that the stationary states, (43) and (56), are
entirely induced by the dynamics of resetting. Indeed, in the
absence of any resetting, the dynamics of a free-diffusing
particle does not allow for a long-time stationary state, since
in the absence of a force, there is no way in which the motion
of the particle can be bounded in space. On the other hand, in
the presence of resetting, the dynamics of repeated relocation
to a given position in space can effectively compete with the
inherent tendency of the particle to spread out in space, leading
to a bounded motion and, hence, a relaxation to a stationary
spatial distribution at long times. In the next section, we
consider the situation where the particle, even in the absence of
any resetting, has a localized stationary spatial distribution and
investigate the change in the nature of the spatial distribution
of the particle owing to the inclusion of resetting events.

C. Particle trapped in a harmonic potential
with energy-dependent resetting

We now introduce a resetting problem that is relevant in
physics: an overdamped Brownian particle immersed in a
thermal bath at temperature T and trapped with a harmonic
potential centered at the origin, V (x) = (1/2)κx2, where
κ > 0 is the stiffness constant of the harmonic potential. The
particle, initially located at x0 = 0, may be reset at any time t

to the origin with a probability that depends on the energy of
the particle at time t . The dynamics is shown schematically in
Fig. 3. For purposes of illustration of the nontrivial effects of
resetting, we consider the space-dependent reseting rate

r(x) = 3

2τc

V (x)

kBT
= 3

4

μ2κ2

D
x2, (60)

where we use D = kBT μ in obtaining the second equality.
Note that the resetting rate is proportional to the energy of
the particle (in units of kBT ) divided by the time scale τc ≡
1/μκ , which characterizes the relaxation of the particle in
the harmonic potential in the absence of any resetting. In this
way, it is ensured that the rate of resetting, (60), has units of
inverse time. Note also that in the absence of any resetting, the
particle relaxes to an equilibrium stationary state with a spatial

FIG. 3. Illustration of the energy-dependent resetting of a Brow-
nian particle moving in a harmonic potential. A Brownian particle
(gray circle) immersed in a thermal bath at temperature T moves with
diffusion coefficient D, with its motion being confined by a harmonic
potential V (x) = κx2/2 (green area), where κ is the stiffness constant.
Here, x is the position of the particle with respect to the center of the
potential. The particle, initially located in the trap center (t ′ = 0; left
panel), diffuses at subsequent times in the energy landscape (t ′ < t ;
middle panel), until a resetting event occurs at time t ′ = t (right
panel). The black curve represents the history of the particle from
t ′ = 0 up to the time corresponding to each snapshot. The rate of
resetting (right color bar) is proportional to the instantaneous energy
of the particle, and therefore, a reset is more likely to take place as
the particle climbs up the potential.

distribution given by the usual Boltzmann-Gibbs form:

P
r(x)=0
st (x) =

√
κ

2πkBT
exp

(
− κx2

2kBT

)
. (61)

Using F (x) = −∂xV (x) = −κx and expression (60) for the
resetting rate in Eq. (19), we find that the potential of the
corresponding quantum mechanical problem is given by

Vq(x) = μ2(F (x))2

4D
+ μF ′(x)

2
+ r(x) = μ2κ2x2

D
− μκ

2
,

(62)

where we have used F ′(x) = −κ . From Eqs. (15) and (16), we
obtain

Pno res(x,t |x0 = 0,0)

= exp

(
μ

2D

∫ x

x0

F (x)dx

)
× exp

(
μκt

2

)
〈x| exp(−Hqt)|x0 = 0〉

= exp

(
− x2

4Dτc

)
exp

(
t

2τc

)
〈x| exp(−Hqt)|x0 = 0〉,

(63)

where the quantum Hamiltonian is given by

Hq = − 1

2mq

∂2

∂x2
+ μ2κ2x2

D
, mq = 1

2D
, h̄ = 1. (64)

We thus find that the propagator 〈x| exp(−Hqt)|x0 = 0〉 is
given by the propagator of a quantum harmonic oscillator,
which has been calculated in Sec. III B. In fact, the Hamiltonian
given by Eq. (64) is identical to that given by Eq. (46) with the
identification α = μ2κ2/D = 1/Dτ 2

c , so that by substituting
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x0 = 0 and α = 1/(Dτ 2
c ) in Eq. (49), we obtain

〈x| exp(−Hqt)|x0 = 0〉

= 1√
2πDτc sinh(2t/τc)

exp

(
− x2

2Dτc

coth(2t/τc)

)
.

(65)

From Eqs. (64) and (65), we obtain

Pno res(x,t |x0 = 0,0)

= exp(t/2τc)√
2πDτc sinh(2t/τc)

exp

(
− x2

2Dτc

[
1

2
+ coth(2t/τc)

])
.

(66)

Following Eq. (20), we may now calculate the probability of
the first-reset time by using Eq. (66) to get

Pres(t |x0 = 0)

= exp(t/2τc)√
2πDτc sinh(2t/τc)

×
∫ ∞

−∞
dx

3x2

4Dτ 2
c

exp

(
− x2

2Dτc

[
1

2
+ coth(2t/τc)

])

= 3 exp(t/2τc)

4τc

√
1

sinh(2t/τc)(1/2 + coth(2t/τc))3
, (67)

which may be checked to be normalized:
∫ ∞

0 dtPres(t |x0 =
0) = 1. The first-reset time distribution, (67), may be written
in the scaling form

Pres(t |x0 = 0) = 3

4τc

G
(

2t

τc

)
, (68)

with the scaling function given by G(y) =
exp(y/4) sinh(y)−1/2(1/2 + coth(y))−3/2.

The mean first-reset time, given by 〈t〉res ≡∫ ∞
0 dtPres(t |x0 = 0), equals

〈t〉res = 4τc√
3

2F1

(
1

8
,
1

2
;

9

8
; −1

3

)
, (69)

where pFq(a1,a2, . . . ,ap; b1,b2, . . . ,bq ; x) is the generalized
hypergeometric function. Introducing the variable z ≡ 2t/τc

and using Eq. (67), we get

Pst(x|x0 = 0) = 1

〈t〉res

√
τc

8πD
exp

(
− x2

4Dτc

)

×
∫ ∞

0
dz

exp(z/4)√
sinh(z)

exp

(
−x2 coth z

2Dτc

)

= 1

〈t〉res

√
τc

8πD
exp

(
− x2

4Dτc

)

× 1

2

(
x2

4Dτc

)−1/4

�(1/8) W1/8,1/4

(
x2

Dτc

)
,

(70)

where Wμ,ν is Whittaker’s W function.
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FIG. 4. Theory versus simulation results for the stationary spatial
distribution of a Brownian particle trapped in a harmonic potential and
undergoing energy-dependent resetting. Circles denote simulation
results, while the line represents the exact analytical expression given
in Eq. (72). Numerical results were obtained from 104 independent
simulations of the Langevin dynamics described in Sec. II A. Error
bars associated with the data points are smaller than the symbol size.
Parameter values are D = 1.0, τc = 0.5.

Using Eq. (69) in Eq. (70), we obtain

Pst(x|x0 = 0) = (1/8)�(1/8)

2F1
(

1
8 , 1

2 ; 9
8 ; − 1

3

)
×

√
3

8πDτc

exp

(
− x2

4Dτc

)(
4Dτc

x2

)1/4

×W1/8,1/4

(
x2

Dτc

)
, (71)

which may be checked to be normalized to unity. We may
write the stationary distribution in terms of a scaled position
variable as

Pst(x|x0 = 0) = (1/8)�(1/8)

2F1
(

1
8 , 1

2 ; 9
8 ; − 1

3

)√
3

8πDτc

R
(

x√
2Dτc

)
,

(72)

with R(y) ≡ exp(−y2/2)(2/y2)1/4 W1/8,1/4(2y2) being the
scaling function. Expression (72) is checked in simulations
in Fig. 4. The simulations involved numerically integrating
the dynamics described in Sec. II A, with the integration time
step equal to 0.01. Using the results that as x → 0, we have
Wk,μ(x) = �(2μ)

�(1/2+μ−k)x
1/2−μ for 0 � Re μ < 1/2, μ �= 0, and

that as x → ∞, we have Wk,μ(x) ∼ e−x/2xk for real x [49],
we get

Pst(x|x0 = 0) ∼
{

(1/8)�(1/8)
2F1(1/8,1/2;9/8;−1/3)

√
3/8Dτc

�(5/8) for x → 0,

exp
(− 3x2

4Dτc

)
for |x| → ∞.

We see again the existence of a cusp at the resetting location
x0 = 0, similarly to all other cases studied in this paper.

The results in this subsection could inspire future experi-
mental studies using optical tweezers in which the resetting
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protocol could be effectively implemented by using feedback
control [3,5,6]. Interestingly, colloidal and molecular gel and
glassy systems show hopping motion of their constituent par-
ticles between potential traps or “cages,” the latter originating
from the interaction of the particles with their neighbors
[50]. This phenomenon is also exhibited by out-of-equilibrium
glasses and gels during the process of aging [51]. Our
results in this section could provide valuable insights into the
aforementioned dynamics, since the emergent potential cages
may be well approximated by harmonic traps and the hopping
process as a resetting event.

IV. SHORTCUTS TO CONFINEMENT

A hallmark of the examples solved exactly in Sec. III
using our path-integral formalism is the existence of stationary
distributions with prominent cusp singularities (see Figs. 2
and 4). These examples demonstrate that the particle can be
confined around a prescribed location by using appropriate
space-dependent rates of resetting.

In physics and nanotechnology, the issue of achieving accu-
rate control of the fluctuations of small particles is nowadays
attracting considerable attention [52–54]. For instance, using
optical tweezers and noisy electrostatic fields, it is now possi-
ble to control accurately the amplitude of fluctuations of the
position of a Brownian particle [55,58,59]. Such fluctuations
may be characterized by an effective temperature. Experiments
have reported effective temperatures of a colloidal particle
in water up to 3000 K [52] and have recently been used to
design colloidal heat engines at the mesoscopic scale [55,60].
Effective confinement of small systems is of paramount
importance for the success of quantum-based computations
with, e.g., cold atoms [56,57].

Does stochastic resetting provide an efficient way to reduce
the amplitude of fluctuations of a Brownian particle, thereby
providing a technique to reduce the associated effective
temperature? We now provide some insights into this question.

Consider the following example of a nonequilibrium
protocol: (i) a Brownian particle is initially confined in
a harmonic trap with a potential V (x) = (1/2)κx2 for a
sufficiently long time that it is in an equilibrium state with
spatial distribution Peq(x) = exp(−κx2/2kBT )/Z, where Z =√

2πkBT /κ; (ii) the space-dependent (parabolic) resetting
rate r(x) = (3/2τc)V (x)/kBT , with τc = (1/μκ), is suddenly
switched on by an external agent—in other words, the rate
of resetting is instantaneously quenched from r(x) = 0 to
r(x) = (3/4)(μ2κ2/D)x2; and (iii) the particle is allowed to
relax to a new stationary state in the presence of the trapping
potential and parabolic resetting. At the end of the protocol,
the particle relaxes to the stationary distribution Pst(x) given
by Eq. (71).

We first note that before the sudden switching-on of the
resetting dynamics, which we assume to happen at reference
time t = 0, the mean-squared displacement of the particle is
given by

〈x2(0)〉 = kBT

κ
, (73)

which follows from the equilibrium distribution before the re-
setting is switched on and is in agreement with the equipartition
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FIG. 5. Shortcut to particle confinement. Confinement of a
Brownian particle using harmonic potentials and space-dependent
rates of resetting. Symbols represent simulation results for relaxation
processes of 105 noninteracting Brownian particles that are initially
in equilibrium in a harmonic potential V (x) = (1/2)κx2. Blue circles
represent the mean-squared displacement of the particle, in units of
〈x2(0)〉, after an instantaneous quench to a harmonic potential with
stiffness κ ′ = 1.7κ (blue arrow in the inset). Red circles, on the other
hand, represent the mean-squared displacement of the particle, in
units of 〈x2(0)〉, after an instantaneous quench of the rate of resetting
from r(x) = 0 to r(x) = (3/4)(μ2κ2/D)x2 (red arrow in the inset).
For the case in which the stiffness of the potential is quenched
from κ to κ ′, it is easily seen that 〈x2(t)〉 = 〈x2(0)〉 exp(−2μk′t) +
(D/(μk′))[1 − exp(−2μk′t)], thereby implying a relaxation time
scale τquench = 1/(2μk′) and yielding the blue curve in the figure.
Note that the time on the x axis is measured in units of τc = 1/μκ .
The red curve, depicting the process of relaxation in the presence of
resetting, may be fitted to a good approximation to A + Be−t/τreset .
One observes that τreset ≈ τquench/3. Parameter values are D = 1,
κ = 1, and μ = 10.

theorem κ〈x2(0)〉/2 = kBT /2. After the sudden switching-on
of the space-dependent rate of resetting, the variance of the
position of the particle relaxes at long times to the stationary
value

〈x2(∞)〉 = kBT /κ√
3 2F1

(
1
8 , 1

2 ; 9
8 ; − 1

3

) 
 0.59
kBT

κ
, (74)

as follows from Eq. (71). The resetting dynamics induces in
this case a reduction by about 40% of the variance of the
position of the particle with respect to its initial value. We
note that such a reduction of the amplitude of fluctuations
of the particle could also have been achieved by performing
a sudden quench of the stiffness of the harmonic potential
by increasing its value from κ to κ ′ 
 (1/0.59)κ 
 1.7κ ,
without the need for switching-on of resetting events. To
understand the difference between the two scenarios, it is
instructive to compare the time evolution of the mean-squared
displacement 〈x2(t)〉 towards the stationary value in the two
cases (see inset in Fig. 5). We observe that resetting leads
to the same degree of confinement in a shorter time. For the
case in which the stiffness of the potential is quenched from
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κ to κ ′, it is easily seen that 〈x2(t)〉 = 〈x2(0)〉 exp(−2μk′t) +
(D/(μk′))[1 − exp(−2μk′t)], thereby implying a relaxation
time scale τquench = 1/(2μk′) and yielding the corresponding
curve in Fig. 5. The other curve depicting the process of
relaxation in the presence of resetting may be fitted to a
good approximation to A + Be−t/τreset . One observes that
τreset ≈ τquench/3. Thus, for the example at hand, we may
conclude that a sudden quench of resetting profiles provides
a shortcut to confinement of the position of the particle to
a desired degree with respect to a potential quench. Similar
conclusions were arrived at for mean first-passage times of
resetting processes and equivalent equilibrium dynamics [61].

It may be noted that the confinement protocol by a sudden
quench of resetting profiles introduced above is amenable
to experimental realization. Using microscopic particles
trapped with optical tweezers [55,59] or feedback traps
[58,62,63], it is now possible to measure and control the
position of a Brownian particle with subnanometric precision.
Recent experimental setups allow us to exert random forces
on trapped particles, with a user-defined statistics for the
random force [52,53,55,64]. The shortcut protocol using
resetting could be explored in the laboratory by designing a
feedback-controlled experiment with optical tweezers and by
employing random-force generators according to, e.g., the
protocol sketched in Fig. 3.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have addressed the fundamental question
of what happens when a continuously evolving stochastic
process is repeatedly interrupted at random times by a sudden
reset of the state of the process to a given fixed state. To this end,
we studied the dynamics of an overdamped Brownian particle
diffusing in force fields and resetting to a given spatial location
at a rate that has an essential dependence on space, namely,
the probability with which the particle resets is a function of
the current location of the particle.

To address stochastic resetting in the aforementioned
scenario, we employed a path-integral approach, discussed
in detail in Eqs. (15)–(19) in Sec. II B 1. Invoking the
Feynman-Kac formalism, we have obtained an equality that
relates the probability of transition between different spatial
locations of the particle before it encounters any reset to
the quantum propagator of a suitable quantum mechanical
problem (see Sec. II B 1). Using this formalism and elements

from renewal theory, we have obtained closed-form analytical
expressions for a number of statistics of the dynamics, e.g.,
the probability distribution of the first-reset time (Sec. II B 2),
the time-dependent spatial distribution (Sec. II B 3), and the
stationary spatial distribution (Sec. II B 4).

We have applied the method to a number of representative
examples, including, in particular, those involving nontrivial
spatial dependence of the rate of resetting. Remarkably, we
have obtained the exact distributions of the aforementioned
dynamical quantifiers for two nontrivial problems: the reset-
ting of a free Brownian particle under “parabolic” resetting
(Sec. III B) and the resetting of a Brownian particle moving
in a harmonic potential at a resetting rate that depends on
the energy of the particle (Sec. III C). For the latter case,
we showed that using instantaneous quenching of resetting
profiles allows us to restrict the mean-squared displacement of
a Brownian particle to a desired value on a faster time scale
than using instantaneous potential quenches. We expect that
such a shortcut to confinement would provide novel insights
in ongoing research on, e.g., engineered-swift-equilibration
protocols [65,66] and shortcuts to adiabaticity [67–69].

Our work may also be extended to the treatment of
systems of interacting particles, with the advantage that the
corresponding quantum mechanical system can be treated
effectively using tools of quantum physics and many-body
quantum theory. Our approach also provides a viable method
to calculate the path probabilities of complex stochastic
processes. Such calculations are of particular interest in many
contexts, e.g., in stochastic thermodynamics [70–73] and in the
study of several biological systems such as molecular motors
[14,74], active gels [75], and genetic switches [76,77]. As a
specific application in this direction, our approach allows us to
explore the physics of Brownian tunneling [78], an interesting
stochastic resetting version of the well-known phenomenon of
quantum tunneling, which serves to unveil the subtle effects
resulting from stochastic resetting in, e.g., transport through
nanopores [79].
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