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Arcsine Laws in Stochastic Thermodynamics
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We show that the fraction of time that a thermodynamic current spends above its average value follows
the arcsine law, a prominent result obtained by Lévy for Brownian motion. Stochastic currents with long
streaks above or below their average are much more likely than those that spend similar fractions of time
above and below their average. Our result is confirmed with experimental data from a Brownian Carnot
engine. We also conjecture that two other random times associated with currents obey the arcsine law: the
time a current reaches its maximum value and the last time a current crosses its average value. These results

apply to, inter alia, molecular motors, quantum dots, and colloidal systems.
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In 1940, Paul Lévy calculated the distribution of the
fraction of time 7 that a trajectory of Brownian motion
stays above zero [1]. Lévy proved that this fraction of time
is distributed according to

1

1
P =2 T(-T7)

. (1)

This result and related extensions are often referred to as the
“arcsine law” [2-5]. The name stems from the fact
that the cumulative distribution of 7 reads F(7) =
JI P(T")dT' = (2/x)arcsin(v/T). A counterintuitive as-
pect of the U-shaped distribution (1) is that its average
value (7) = 1/2 corresponds to the minimum of the
distribution, i.e., the less probable outcome, whereas values
close to the extrema 7 =0 and 7 =1 are much
more likely. Brownian trajectories with a long “winning”
(positive) or “losing” (negative) streak are quite likely.

Several phenomena in physics and biology have been
shown to be described by the arcsine law and related
distributions. Examples include conductance in disordered
materials [6,7], chaotic dynamical systems [8], partial
melting of polymers [9], quantum chaotic scattering
[10], and generalized fractional Brownian processes [11].
Notably, the arcsine law (1) has also been explored in
finance [12], where investment strategies can lead to a
much smaller alternance of periods of gain and loss than
one would expect based on naive arguments.

Recent theory and experiments extended thermodynam-
ics to mesoscopic systems that are driven away from
equilibrium [13—-19]. Mesoscopic systems operate at ener-
gies comparable with the thermal energy k;7, where kj is
the Boltzmann constant and 7 is the temperature. At these
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energy scales, observables such as work, heat, entropy
production, and other thermodynamic currents are not
deterministic as in macroscopic thermodynamics, but rather
stochastic quantities [20].

While the concept of a fluctuating entropy was already
suggested by the forefathers of thermodynamics and
statistical physics [21], the universal statistical properties
of thermodynamic currents discovered in the last two
decades have extended thermodynamics, providing novel
insights that also apply to the nanoscale. Prominent
examples are fluctuation relations [22-28], which general-
ize the second law of thermodynamics. More recently,
several other universal results have been obtained. They
include a relation between precision and dissipation known
as the thermodynamic uncertainty relation [29-31], stop-
ping-time and extreme-value distributions of entropy pro-
duction (and related observables) [32-35], and efficiency
statistics for mesoscopic machines [36-39].

In this Letter, we find a new universal result about the
statistics of thermodynamic currents. We demonstrate that
the fraction of time 7, that a generic thermodynamic
current stays above its average value (see Fig. 1) is
distributed according to Eq. (1). This result is valid for
mesoscopic systems in a nonequilibrium steady state and
also for periodically driven mesoscopic systems. The proof
of the arcsine law for 7, is based on a theorem for Markov
processes that has hitherto remained unexplored in physics
[40]. Our results are verified with experimental data from a
Brownian Carnot engine [39]. Based on numerical evi-
dence, we also conjecture that two other random variables
related to thermodynamic currents are distributed according
to (1): the last time a fluctuating current crosses its average
T, and the time elapsed until a current reaches its maximal
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FIG. 1. Tllustration of the fraction of time 7; elapsed by a
thermodynamic current above its average. The figure shows three
different realizations of a stochastic current (colored lines) and its
average linear growth (black line). For the example of the red
trajectory, we mark in the x axis the time intervals for which the
trajectory stays above the average (red shaded areas). The values
of 7, for the three trajectories are shown in the legend.

deviation from the average 7 5. These results are valid in the
limit of large observation times.

Arcsine law for T |.—We consider small nonequilibrium
physical systems in contact with one or several thermal and/
or particle reservoirs at thermal equilibrium, for instance, a
single enzyme (the system) immersed in a solution (the
reservoir) that contains both substrate and product mole-
cules. The system is in a nonequilibrium steady state if the
concentrations of substrate and product in the large
reservoir and the rate at which the enzyme consumes the
substrate are approximately constant. In this example, the
chemical potential difference between substrate and prod-
uct is the thermodynamic force that drives the system out of
equilibrium.

A vast class of these systems in physics and biochemistry
can be described by Markov processes within the frame-
work of stochastic thermodynamics [14]. In this frame-
work, transition rates are associated with thermodynamic
quantities, such as temperature and chemical potential,
through the generalized detailed balance relation [28]. As a
consequence, integrated probability currents represent
thermodynamic currents. At steady state, their average rate
is constant, leading to a linear increase (or decrease) with
time of the average thermodynamic currents. The fraction
of time that a stochastic thermodynamic current X(¢)
spends above its average value (X(z)) during an observa-
tion time 7, > 0 is defined as

7 =1 / T O(X(1) - (X(1)))d, 2)
0

Iy

where 0(x) is the Heaviside function. This random variable
T, is illustrated in Fig. 1.

Our main result is that, for any thermodynamic current in
a small system at steady state that is described by a Markov
process, the probability density of 7', for large 7, is given
by Eq. (1). Hence, stochastic trajectories for which currents
such as heat, work, and entropy production stay all the time
above or below their average value are the most likely. The
striking universality of this result is illustrated in Fig. 2,
where we show numerical simulations of three models of
different physical systems: a double quantum dot [44], a
molecular motor [45], and a driven colloidal particle [34].
The mathematical proof of this result requires the use of a
theorem for Markov chains that establishes an arcsine law
for a random variable different from a current [40] and a
suitable mapping between two Markov chains [41].
Interestingly, the proof also extends to time-symmetric
observables such as activity (or frenesy [46]) (see
Supplemental Material [41] for details). A key idea behind
this proof is as follows. In contrast to Brownian motion,
currents in Markov processes are sums of correlated
random variables. However, if we consider a counting
procedure for which the current is updated only when an
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FIG.2. Numerical illustration of the steady-state arcsine law for
T. (a)—(c) Graphical illustration of the models. (a) A double
quantum dot. (b) A molecular motor. (c) A colloidal particle on a
periodic potential subjected to an external force. The thermody-
namic currents that we consider are the electron current through
the cold dot, the net number of steps of the motor, and the net
position of the particle, respectively. (d) Comparison of the
prediction of Eq. (1) (orange line) with numerical simulations for
the three different models. For each curve, the number of
realizations is 10° and the total time is tp = 10* (quantum dots
and molecular motor) and 7, = 10 (colloidal particle). Details of
the three models are given in the Supplemental Material [41].
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arbitrary reference state is revisited, the increments of the
current within this procedure become independent random
variables due to the so-called strong Markov property [40].

Small thermodynamic engines and several other systems
of physical and technological interest are driven by an
external periodic protocol [18,47]. Such periodically driven
systems are described by the Markov process with time-
periodic transition rates. Nevertheless, in the long time
limit, it is possible to describe periodically driven systems
as steady states of Markov processes with time-independent
transition rates [48,49]. Hence, the arcsine law for 7, is
also valid for periodically driven systems, in the limit at
which the observation time 7, is much larger than the period
of the protocol. We have illustrated this result with
numerical simulations of two models: a colloidal particle
in a time-periodic potential and a theoretical model for a
Brownian Carnot engine [41].

Conjecture for T, and T ;.—For Brownian motion, two
other random variables obey Lévy’s arcsine law (1). One is
the last time the walker crosses zero and the other is the
time the position of the walker reaches its maximum value.
The equivalent random variables for the present case are
defined as follows. The fraction of time elapsed until a
current crosses its average value for the last time 7, is
defined as

t
T, = subiepos, {; Ay(r) = o}, 3)

where Ay (7) = X (1) — (X(t)). The time ty,, is defined as
the time at which Ay(7) attains its supremum, i.e.,
Ax(fsup) = supsepo.,)Ax(2). The fraction of time elapsed
until a current reaches its maximal deviation above its
average value is

K =—"F, (4)

We have verified numerically that both 7, and 75 tend to
the distribution (1) in the limit of large 7. Specifically, we
have performed numerical simulations of the models shown
in Figs. 3(a)-3(c) with a finite observation time 7, where 7,
is small enough such that we can accurately determine the
third cumulant associated with the current, which is non-
zero for all models (see Supplemental Material [41]). Our
simulations then probe large non-Gaussian fluctuations
and, therefore, they test arcsine laws for Markov processes,
beyond Brownian motion.

As shown in Fig. 3(d), we have performed a finite-size
scaling analysis of the Kolmogorov-Smirnov (K-S) statistic
for 7, T,, and 7 3, with respect to the arcsine distribution
(1), as a function of 7. All random variables show the same
behavior: for large times, the K-S statistic goes to zero as
the power law £;'/2. For a finite number n of independent
identically distributed random variables, the K-S statistic

K-S statistic
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FIG. 3. Numerical verification of the three arcsine laws.

(a)—(c) Graphical illustration of minimal stochastic models with
four (a), five (b), and six (c) different states. Each state is
represented by a circle with a number and the lines represent
nonzero transition rates. For all models, we have evaluated the
current from state 1 to state 2, as indicated with bars in the figures.
(d) Kolmogorov-Smirnov statistic between a reference 7 de-
scribed by the arcsine law (1) and 7, (triangles), 7, (circles), and
75 (squares), as a function of ;. Different colors represent results
for model (a) (blue), (b) (red), and (c) (green). Each symbol is
obtained from 107 numerical simulations of total duration t;. The
lines are guides to the eye and are given by ~t;1/ 2. Details of the
three models are given in the Supplemental Material [41].

scales as n~'/2 [50]. The scaling observed in Fig. 3(d)
suggests that also the K-S statistic of 7, 7,, and 7 5 follow
a similar scaling, with their distribution for finite observa-
tion time 7, approaching the distribution in Eq. (1) as t}l/ 2,
We have also performed this analysis for the models in
Fig. 2 [41]. Based on this numerical evidence, we then
conjecture that 7, and 75 are also distributed according
to (1).

Experimental results.—Heat engines are paradigmatic
examples of periodically driven systems [51]. We test the
arcsine law for 7| using experimental data of a Brownian
Carnot engine [39]. The working substance of the engine is
a single optically trapped colloidal particle of radius R =
500 nm immersed in water. The particle is trapped in a
time-periodic harmonic potential U(x,?) = «(¢)x*(t)/2,
whose stiffness «(7) is externally controlled along a
period 7 between the minimum value x;=«(0)=
(2.040.2) pNum~! and the maximum value ky; =x(7/2) =
(20.0+£0.2) pNum~!. In addition, the effective kinetic
temperature of the particle is switched periodically between
acold 7, = 300 K and a hot temperature 7}, = 526 K. The
effective kinetic temperature is controlled with an external
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FIG. 4. Fluctuations of 7 in the Brownian Carnot engine.
Sample traces of the stochastic work exerted on the colloidal
particle as a function of time. The legend indicates the corre-
sponding value of the time 7 elapsed for each trajectory above
the average value of the work (black curve). The background
color illustrates the effective kinetic temperature of the particle
during the operation of the engine, with 7. = 300 K and T, =
526 K corresponding to the minimum (blue) and maximum (red)
temperatures of the engine. The isothermal steps are connected by
microadiabatic protocols in which the temperature of the particle
changes smoothly with time [41,53].

noisy electrostatic field using the “white noise technique”
[52]. The fine and simultaneous electronic control of the
trap strength and the temperature of the particle allows us to
implement protocols of different cycle times = without loss
of resolution, which range from z = 10 to 7= 200 ms. The
total experimental time is 50 s for all the values of 7 [41].

A key thermodynamic current that characterizes the
performance of the Brownian Carnot engine is the stochas-
tic work W(r), where we adopt the convention that negative
W(t) means extracted work. The stochastic work is the
change of U[x(¢)] due to the external control exerted on the
particle that leads to a time-varying stiffness x(7) [see
Eq. (17) in [41] ]. We measure the work from experimental
traces of the particle position by means of the expression
W(t) = [i(oU/or)dl = (1/2) [{x*(f)dk(f). We point
out that, in the asymptotic limit of large observation time
tf, the stochastic work can be approximated as an inte-
grated probability current due to the first law. In this limit,
the work W(r) ~—Q,(1) — Q.(t) equals the heat taken
from the hot reservoir minus the heat that flows to the
cold reservoir. The contribution to the first law due to the
energy change, which is not extensive in #, becomes
negligible for large 7, in comparison to the work and the
heat exchanges.

In order to test the arcsine law, we measure the fluctua-
tions of the fraction of time 7 that the stochastic work
W(r) elapses above its average value; see Fig. 4 for an
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FIG. 5. Experimental verification of the arcsine law for 7| in

the Brownian Carnot engine. Empirical cumulative distribution of
the fraction of time 7', the work exerted on the particle elapses
above its average value. The experimental data are obtained from
N = 103 cycles of the Brownian Carnot engine with cycle period
7= 50 ms. Different colors represent the experimental cumulative
distribution of 77, calculated over different values of 7, (see
legend) and the theoretical arcsine distribution (thick orange
line). (Inset) Two-sample Kolmogorov-Smirnov statistic between
the empirical and theoretical cumulative distributions [50,54] as a
function of 7.

illustration. We compute 7', :(l/tf)fé’dl&(W(t)—(W(t)))
integrating over different values of the observation time ¢,
which is an integer number of periods. Since the arcsine
law holds in the limit of large tr, we perform a finite-size
scaling analysis of the validity of Eq. (1). Figure 5 shows
that for the experimental data the cumulative distribution of
T, converges to (2/x)arcsin(y/7 ;) when increasing the
observation time 7,. We quantify the discrepancies between
the experimental data and the theoretical cumulative dis-
tribution given by (2/7) arcsin(v/7 ) using the two-sample
K-S statistic [50,54] (Fig. 4, inset). A finite-size scaling
analysis of the K-S statistic as a function of 7, reveals that
the experimental distributions of 7'; converge to the arcsine
distribution. Notably, we have also demonstrated the
second and third arcsine laws with the same experimental
data and verified that similar results are obtained in
different experimental conditions, i.e., for different values
of the period 7 (see Supplemental Material [41]).
Conclusion.—We have shown with theory, simulations,
and experiments that the fraction of time 7', a stochastic
current elapses above (or below) its average value is
distributed according to Lévy’s arcsine law (1) in the limit
of large observation time. This result is valid for both
systems in nonequilibrium steady states and for periodi-
cally driven systems such as mesoscopic engines. Based on
numerical evidence, we have also conjectured that there are
arcsine laws for the last time 7, at which a current crosses
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its average value and for the time 7 5 when a current reaches
its maximal deviation from its average.

We have investigated fluctuations of mesoscopic systems
described by Markovian dynamics. It is an open question
whether similar results also hold for non-Markovian
stochastic processes used in the description of active
matter [55,56] and open quantum systems [57]. It will
be interesting to investigate whether the arcsine laws for
thermodynamic currents can be used to design efficient
control at the nanoscale.
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