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Modeling noisy oscillations of active systems is one of the current challenges in physics and biology.
Because the physical mechanisms of such processes are often difficult to identify, we propose a linear
stochastic model driven by a non-Markovian bistable noise that is capable of generating self-sustained
periodic oscillation. We derive analytical predictions for most relevant dynamical and thermodynamic
properties of the model. This minimal model turns out to describe accurately bistablelike oscillatory motion
of hair bundles in bullfrog sacculus, extracted from experimental data. Based on and in agreement with
these data, we estimate the power required to sustain such active oscillations to be of the order of 100 kBT
per oscillation cycle.
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Most nonequilibrium systems actively sustain their
dynamics by dissipating energy into their environment
and by producing entropy, as observed in several branches
of natural sciences [1–12]. Important examples are “active
oscillators,” the effective mesoscopic degrees of freedom
of which are described by oscillating variables. In nature,
these oscillators drive climate changes, sustain heart beat,
facilitate vocal and auditory systems, and support neural
signaling and circadian rhythms [1,4,13–34]. Here we
focus on those responsible for mechanoelectrical trans-
duction in the bullfrog’s sacculus, for which experimental
data are available [4,13,14].
Active oscillatory motion is often interpreted as relax-

ation oscillations or noisy bistable oscillations, which
can be modeled by stochastic Van der Pol and Duffing
equations [4,13–33,35,36], respectively. These two distinct
dynamical regimes are not always easy to distinguish in
experiments. An alternative way to construct a system
displaying bistable oscillations consists of letting one of its
degrees of freedom to be a two-state stochastic process such
as telegraph noise [37–45].
In this Letter, we propose a stochastic linear model for

self-sustained, active, bistable oscillations. Themodel gene-
ralizes the Ornstein-Uhlenbeck process by allowing the
equilibriumposition (the center of the harmonic potential) to
be determined by a dichotomous non-Markovian noise.
Notably, depending on the distributions of thewaiting times,
the model can reproduce a wide variety of bistable oscil-
lations, includingMarkovian and non-Markovian switching
processes.We obtain exact analytical predictions for several

dynamical and thermodynamic quantities characterizing the
nonequilibrium nature of the system. As a relevant appli-
cation, we use our model to reproduce recordings of the
spontaneous motion in bullfrog hair bundles and estimate
the dissipated power, which is experimentally inaccessible
but crucial for interpreting the energetics of system.
Model.—We consider an Ornstein-Uhlenbeck process

xðtÞ with time-dependent center cðtÞ described by the
stochastic differential equation

γ _xðtÞ ¼ −κ½xðtÞ − cðtÞ� þ ξðtÞ: ð1Þ

Here κ is the stiffness of the harmonic potential
Vðx; cÞ ¼ κðx − cÞ2=2, γ is the effective friction coeffi-
cient, and ξðtÞ is a Gaussian white noise with zero mean
hξðtÞi¼0 and autocorrelation hξðt1Þξðt2Þi¼2γ2Dδðt1−t2Þ,
where the effective diffusion coefficient D ¼ kBT=γ is
related to the temperature through the Einstein relation.
The center cðtÞ is a dichotomous process taking the values
�c0, with c0 ≥ 0, and changing sign at stochastic intervals.
We denote by ψ�ðτÞ the distribution of the waiting time
spent in�c0 before switching sign; we refer to Fig. 1(a) for
an illustration. The relevant timescales of the dynamics
are the two mean waiting times hτi� ≡ R∞

0
dτ τ ψ�ðτÞ and

the relaxation time τν ¼ ν−1 in the harmonic potential,
where ν ¼ κ=γ. Note that cðtÞ is a non-Markovian process
unless the two waiting-time distributions are exponential
ψ�ðτÞ ¼ e−τ=hτi�=hτi�. In this case, cðtÞ corresponds to the
so-called (Markovian) telegraph noise [46].
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In Fig. 1 we compare representative trajectories of the
process xðtÞ for various choices of the waiting-time dis-
tributions ψ�ðτÞ. Figure 1(b) shows a typical realization of
xðtÞ for the exponential waiting times distribution in
Fig. 1(c). We anticipate that the monotonicity of ψ�ðτÞ
prevents regular oscillations: it follows that the correspond-
ing power spectral density Sx in Fig. 1(d) displays a
Lorentzian-like shape. Figure 1(e), instead, shows a reali-
zation of the process xðtÞ for the gamma-distributed waiting
times reported in Fig. 1(f), which is characterized by a
typical timescale for the switching mechanism. The power
spectral density Sx of the process, shown in Fig. 1(g),
features a pronounced peak at the typical frequency of the
coherent oscillations. In both examples presented here, the
average time hτi� between two successive switches is large
compared to relaxation time τν, leading to the (almost)
complete equilibration toward the two minima of the
potential. In general, as we discuss below, the interplay
between hτi� and τν determines qualitatively different
types of stationary dynamics.
Dynamics.—We encode the state of the system at time t

by the couple of stochastic variables ðxðtÞ; σðtÞÞ, where
σðtÞ ¼ cðtÞ=c0 ¼ �1 is the sign of cðtÞ. A quantity of
interest is the joint probability density ρσðx; tjx0Þ for
the system to be in the state ðx; σÞ at time t given that
its initial state was xð0Þ ¼ x0. Its normalization requiresP

σ

R
dx ρσðx; tjx0Þ ¼ 1 for all times t ≥ 0. We derive a

renewal equation for ρσðx; tjx0Þ, see Supplemental Material
[47], in terms of the waiting-time distributions ψσðτÞ and
of the probability density Gð0Þ

σ ðx; tjx0Þ. The latter is given

by the probability density to be in x at time t for an
Ornstein-Uhlenbeck process with fixed center cðtÞ ¼ σc0.
From the formal expression of ρσðx; tjx0Þ, we determine the
analytical expressions of the Laplace transform of the first
and second moments of xðtÞ for generic waiting-time
distributions ψσðτÞ.
Because switches break detailed balance, the system

reaches a nonequilibrium stationary state at long times.
For exponentially distributed waiting times with rates
rσ ¼ 1=hτiσ, we find an explicit expression of the sta-
tionary distributions ρstσ ðxÞ ¼ limt→∞ ρσðx; tjx0Þ. In this
case, the finite-time densities ρσðx; tjx0Þ satisfy Fokker-
Planck equations with source terms

∂tρσðx;tjx0Þ¼−∂xJσðx;tÞþr−σρ−σðx;tjx0Þ−rσρσðx;tjx0Þ;
ð2Þ

where Jσðx; tÞ ¼ −½νðx − σc0Þ þD∂x�ρσðx; tjx0Þ is the
spatial probability current associated with particles in the
state σ at time t. The stationary solutions ρstσ ðxÞ of Eq. (2)
are then given by

ρstσ ðxÞ¼
N
2

Z þ1

−1
dz ρGðx−c0zÞð1−σzÞrσ=ν−1ð1þσzÞr−σ=ν;

ð3Þ

where we introduce the Gaussian distribution ρGðxÞ≡
exp½−x2ν=ð2DÞ�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πD=ν
p

. The constant N −1 ≡
ν
P

σ 2F1ð1; 1 − r−σ=ν; 1þ rσ=ν;−1Þ=rσ guarantees the
normalization of ρstσ ðxÞ, where 2F1 is the hypergeometric

FIG. 1. (a) Schematic representation of the switching mechanism controlling the dynamics described in Eq. (1): after a time τ drawn
from the distribution ψ�ðτÞ the center c of a harmonic potential VðxÞ ¼ ðκ=2Þðx − cÞ2 switches from �c0 to ∓c0. (b), (e) Realizations
of the stochastic driving cðtÞ (dashed blue line) and of the process xðtÞ (solid blue line) obtained from a numerical simulation of Eq. (1),
for (b) the exponential and (e) the gamma waiting-time probability density function (PDF) plotted, respectively, in (c) and (f). In
particular, the exponential distributions have rates rþ ¼ 1=7 and r− ¼ 2=17, whereas the gamma distributions (see the main text) have
shape parameters kþ ¼ 15, k− ¼ 10, and scale parameters θþ ¼ 7=15, θ− ¼ 17=20. (d), (g) Power spectral density Sx (symbols) of xðtÞ
on the doubly logarithmic scale, obtained for two time series of total duration t ¼ 1.5 × 103 with the same parameters as those in (b) and
(d). The dashed lines are given by Eq. (6). The dynamics was simulated with D ¼ 1, c0 ¼ 5, ν ¼ 2.5, and a time step Δt ¼ 10−3.
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function. Similar results were recently reported for run-and-
tumble particles [48,49]. The total stationary density
ρstðxÞ ¼ ρstþðxÞ þ ρst−ðxÞ can be either unimodal or bimodal,
depending on the values of the parameters of the model, as
shown in Fig. 2 numerically and analytically using Eq. (3).
In particular, bistability emerges whenever the relaxation in
the harmonic potential is fast enough with respect to the
switching frequency and the amplitude of thermal fluctua-
tions is small compared with the distance between the two
minima of the potential. For symmetric and exponentially
distributed waiting times, i.e., rσ ¼ r, we can characterize
the transition from unimodal to bimodal analytically,
exploiting the fact that ρstðxÞ is unimodal if it displays a
maximum at x ¼ 0, and bimodal otherwise. The transition
is controlled by the dimensionless parameters ζ ≡ r=ν,
describing the interplay between relaxation and switching,
and χ ≡ c20ν=ð2DÞ, which quantifies how much the two
centers �c0 are distinguishable with respect to the ampli-
tude of thermal fluctuations. We find that for fast switching
r ≥ ν (ζ ≥ 1) the stationary distribution is always unim-
odal, as shown by the blue curve and data points in Fig. 2,

whereas for slow switching r < ν (ζ < 1) ρstðxÞ can display
both mono- and bistability. In particular, the dynamics is
monostable for χ ≤ χ�ðζÞ, as shown in red in Fig. 2, and
bistable for χ > χ�ðζÞ, shown in green. The critical
value χ�ðζÞ depends solely on ζ (see Supplemental
Material [47]).
Another relevant quantity that characterizes the dynam-

ics of the system is the long-time correlator CxðtÞ≡
limτ→∞hxðtþ τÞxðτÞi. Its Fourier transform is the power
spectral density SxðωÞ ¼ ĈxðωÞ ¼ hjx̂ðωÞj2i [50], where
we use the convention f̂ðωÞ≡ R þ∞

−∞
dte−iωtfðtÞ for the

Fourier transform f̂ of a function f. Because the noise
terms ξ and c in Eq. (1) are independent, it follows that

SxðωÞ ¼
2Dþ ν2ScðωÞ

ν2 þ ω2
; ð4Þ

where ScðωÞ ¼ hjĉðωÞj2i is the power spectrum of cðtÞ.
For generic non-Markovian cðtÞ, calculating ScðωÞ requires
the knowledge of its stationary two-time statistics derived
in the Supplemental Material [47]. In particular, the key
quantity is the Laplace transform C̃cðsÞ of the long-time c
correlator CcðtÞ, defined as above, which is given by

C̃cðsÞ ¼ c20

�
1

s
−

2

hτi
Ψ̃−ðsÞΨ̃þðsÞ

1 − ψ̃−ðsÞψ̃þðsÞ
�
: ð5Þ

Here we define the Laplace transform of f as f̃ðsÞ≡R∞
0

dt e−stfðtÞ, thus ψ̃σðsÞ and Ψ̃σðsÞ ¼ ½1 − ψ̃σðsÞ�=s are,
respectively, the transforms of the waiting-time distribution
ψσðtÞ and of its cumulative ΨσðtÞ ¼

R∞
t
dτ ψσðτÞ, whereas

hτi≡ ðhτiþ þ hτi−Þ=2 is the average half-period of the
oscillations. The analyticity of C̃cðsÞ on the imaginary axis
implies that ScðωÞ ¼ C̃cðiωÞ þ C̃cð−iωÞ.
Recent works [51–54] revealed that nonmonotonic

waiting-time distributions often emerge from underlying
nonequilibrium stationary processes. These features
may be described by gamma-distributed waiting times
ψσðτÞ ¼ ½θkσσ ΓðkσÞ�−1τkσ−1e−τ=θσ , with average hτiσ ¼
kσθσ and Laplace transforms ψ̃σðsÞ ¼ ð1þ sθσÞ−kσ . For
this example, the power spectrum ScðωÞ reads

ScðωÞ ¼
4c20
hτiω2

ðRþR−Þ2 − 1þ ð1 − R2
−ÞRþ cosϕþ þ ð1 − R2þÞR− cosϕ−

ðRþR−Þ2 þ 1 − 2RþR− cosðϕþ þ ϕ−Þ
; ð6Þ

where we define ϕσðωÞ≡ kσ arctan ðωθσÞ and RσðωÞ≡
ð1þ ω2θ2σÞkσ=2. Equation (6) agrees with the numerical
estimates of the power spectrum for both exponentially and
gamma-distributed waiting times, as shown in Figs. 1(c)
and 1(f), respectively. We find that the power spectrum

SxðωÞ displays a peak at a frequency ωmax for sufficiently
large values of k, which depend on the choice of param-
eters. Moreover, for large values of k, the spectrum may
display additional peaks close to the integer multiples of
ωmax. For symmetric gamma-distributed waiting times,

FIG. 2. Stationary probability density ρstðxÞ for symmetric
exponentially distributed waiting times: numerical simulations
(symbols) are compared with the analytical solution in Eq. (3)
(dashed lines). The three cases correspond to fixed values ofD ¼ 1
and ν ¼ 2.5, but various values of r and c0: blue, c0 ¼ 2 and
r ¼ 5 > ν; red, c0 ¼ 0.5 and r ¼ 1.25 < ν, for which χ ≃ 0.31;
green, c0 ¼ 2.5 and r ¼ 1.25, for which χ ≃ 7.8. In the latter two
cases, ζ ¼ 1=2 corresponding to the critical value χ�ðζ ¼ 1=2Þ ≃
1.58 (see main text). The numerical estimates of ρstðxÞ are obtained
from N ¼ 104 simulations of Eq. (1) using Euler’s numerical
integration method with time step Δt ¼ 5 × 10−3.
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Fig. 3 shows the frequencies corresponding to the first
two peaks of SxðωÞ as a function of the shape parameter k.
We note that the second peak appears for k≳ 14.6 at
frequency ≃3ωmax, which results from the fact that, upon
increasing k, cðtÞ increasingly resembles a deterministic
symmetric square wave whose Fourier spectrum has only
odd harmonics.
Stochastic thermodynamics.—To characterize the thermo-

dynamics of the active mechanism driving the oscillations,
we evaluate the statistics of the work. The stochastic work
δWðtÞ [55] done on the system in the time interval ½t; tþ dt�
is given by δWðtÞ ¼ ð∂V=∂cÞ ∘ dcðtÞ ¼ −κxðtÞ ∘ dcðtÞ,
where ∘ denotes the Stratonovich product, and the second
equality follows from c2ðtÞ ¼ c20. Note that δWðtÞ is nonzero
only when a switch occurs at time t: energy is injected into
[extracted from] the system, i.e., δWðtÞ > 0 [δWðtÞ < 0],
when xðtÞdcðtÞ < 0 [xðtÞdcðtÞ > 0]. From the analytical
expression of the first moment of xðtÞ at a switch, we derive
the exact expression of the stationary average power
h _Wi ¼ limt→∞hδWðtÞi=dt, i.e.,

h _Wi ¼ 2κc20
hτi

½1 − ψ̃þðνÞ�½1 − ψ̃−ðνÞ�
1 − ψ̃þðνÞψ̃−ðνÞ

; ð7Þ

which holds for arbitrary waiting-time distributions ψσðτÞ.
The average stationary power is always positive in agreement
with the second law: h _Wi ¼ Th _Stoti ≥ 0, where h _Stoti is the
rate of entropy production. Moreover, Eq. (7) implies the
upper bound h _Wi ≤ 2κc20=hτi, which is saturated in the limit
of infinitely fast relaxation time (ν → ∞). The upper bound
2κc20=hτi is the ratio between the characteristic energy
V0 ¼ κð2c0Þ2=2 that xðtÞ fluctuating around the minimum
of one potential acquires in the other potential immediately
after the switch and the average time hτi between successive

switches. For ν → ∞, thisV0 is indeed the energy injected in
the system at a switch. Furthermore, we derive in the
Supplemental Material [47] exact expression of the average
work hWðtÞi ¼ R t

0
hδWðτÞi.

Experimental application.—An example of a biological
process displaying active oscillations is the spontaneous
motion of hair bundles from a bullfrog’s ear [4,13,14]. The
hair bundle is an organelle formed by a cohesive tuft of
cylindrical stereocilia that protrude from the apical surface
of the namesake hair cells. This receptor cells transduce a
mechanical stimulus, such as a sound wave, into a neural
signal and thus facilitates hearing and other sensory
processes in vertebrates. The oscillatory motion of a hair
bundle is powered by an active process, which is essential
for the organelle’s sensory function, and results in the
violation of the fluctuation-dissipation theorem [56].
Several stochastic models have been proposed for the

time series of hair bundles [13,14,57–62]. All these models,
which can be reduced to the family of Duffing–Van der Pol
oscillators [13,33,35,36], rely on nonlinear equations of
motion with hidden degrees of freedom of diverse origins.
Under various conditions, such a system can describe both
bistable and limit-cycle regimes of oscillatory motion,
which are often not easy to distinguish.
In typical experiments, oscillating hair bundles display a

great variety of different nonlinear oscillations [14]. We
applied our theoretical model to symmetric bistable oscil-
lations, and therefore we specifically select appropriate
traces from our experimental recordings. These measure-
ments were performed on a dissected mechanosensitive
epithelium of a bullfrog’s sacculus, as described previously
[63,64]. In an experiment, we mounted the mechanosensi-
tive tissue in a two-compartment chamber, such that the
hair cells were exposed to two different ionic solutions on
their apical and basal side. This setup mimicked the
physiological condition in which hair cells operate in the
inner ear and evoked spontaneous oscillations of the hair
bundles. To better resolve the movement of the oscillating
hair bundle, we attached a glass fiber to the bundle’s tip and
projected the shadow onto a photodiode [65]. This cali-
brated signal of the photodiode reported the position of
the oscillating bundle as a function of time [blue line in
Fig. 4(a)].
As reported below, the linear model proposed in this

Letter is also capable of accounting for the basic features of
the hair-bundle motion, which are common to simple active
oscillators, see Figs. 4(a)–4(c). To make contact with the
experimental data, we apply a simulation-based inference
approach [66–68] (see Supplemental Material [47]) to
determine values of the unknown parameters in Eq. (1)
for a selection of three experimental cases, in which we
observed simple symmetric oscillations of xðtÞ in the
case of gamma-distributed waiting times. Our model
reproduces well the pattern of the hair-bundle motion as
shown in Fig. 4(a). The simulated time series of xðtÞ also

FIG. 3. Frequencies of the first (blue) and second (red) peaks of
the power spectrum SxðωÞ in Eq. (4), as functions of k, for
θ ¼ 1.5, D ¼ 0.5, c0 ¼ 1, and ν ¼ 2.5. As k increases above
≃1.5 (dashed blue vertical line) a first local maximum appears in
SxðωÞ at a typical frequency (blue symbols), well approximated
by the blue solid line. As k exceeds ≃14.6 (dashed red vertical
line), a second peak appears at a typical frequency (red symbols),
well approximated by the red solid line.
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quantitatively matches the probability density and time-
frequency statistics of experimental measurements, see
Figs. 4(b) and 4(c). Using the exact analytical predictions
obtained for the equation of motion (1), we can estimate the
average power dissipated by the active process that drives
the hair-bundle oscillations in the bullfrog’s ear. Its value
[Fig. 4(d)], h _Wi ∼ 100kBT=cycle, is of the same order of
magnitude as estimates of the heat dissipation rate in
the hair-bundle spontaneous fluctuations [56] and of the

viscous energy dissipation under weak, external periodic
stimulation [69]. Assuming that active oscillations result
from adenosine triphosphate (ATP) hydrolysis by myosin
motors with a free energy change of ∼10kBT per molecule
[70], we estimate that about ten ATP molecules are required
to fuel a single oscillation cycle of the hair bundle.
Discussion.—In this Letter, we have introduced an

exactly solvable stochastic model describing the dynamics
of non-Markovian active oscillators. This system displays
key dynamical features of active oscillators: transition from
a monostable to a bistable regime, sharp power spectra,
broken detailed balance, and heat dissipation. We have also
generalized the theoretical analysis presented here to
accommodate asymmetric waiting-time distributions of
the underlying noise (see Supplemental Material [47]),
as observed in many biological processes [52]. We have
also shown that our linear, non-Markovian model repro-
duces with high accuracy the probability density and power
spectrum of several experimental recordings from the top of
the bullfrog’s saccular hair bundle. Fitting the data to the
model, we have calculated that the power consumption by
the hair bundle during its spontaneous motion requires the
consumption of at least ten ATP molecules per oscillation
cycle. We expect that our model could be applied to
decipher the energetics of other relevant active oscillations
observed in living systems, such as confined cell migration
[71], neuronal networks [72], and actomyosin gels [73].
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